IPAC 2010 Kyoto Japan, May 24-28, 2010

Status of the PEFP : A High Duty Proton Linac and Its Application

Byung-Ho Choi on behalf of the Proton Engineering Frontier Project

양성자기반공학기술개발사업단 Proton Engineering Frontier Project http://www.komac.re.kr

- **II.** Accelerator Development & Construction
- **III. Beam Utilization & Applications**
- **IV. Activities for the Future Extension**
- V. Summary

□ Schematics of PEFP Accelerator & Beamlines

Features of the PEFP linac

- 50 keV Injector (Ion Source + LEBT)
- 3 MeV RFQ (4-vane type)
- 20 & 100 MeV DTL
- RF Frequency : 350 MHz
- Beam Extractions at 20 or 100 MeV
- 5 Beamlines for 20 MeV & 100 MeV
 - Beam to be distributed to 3 BL via AC

Output Energy (MeV)	20	100
Peak Beam Current (mA)	20	20
Max. Beam Duty (%)	24	8
Avg. Beam Current (mA)	4.8	1.6
Pulse Length (ms)	2	1.33
Max. Repetition Rate (Hz)	120	60
Max. Avg. Beam Power (kW)	96	160

Layout of Accelerator Tunnel & Experimental Hall

□ Status of Accelerator Development

- 20MeV: fully developed & installed and under routine operation
- 6 tanks up to 91 MeV: fabricated, partly tested & prepared
- 1 tank (91~102 MeV): under fabrication

□ RFQ Design & Fabrication

- 350 MHz, 4 vane structure, 85kV constant voltage (1.8 Kilpatrick)
- 3.25 m long with resonant coupling and dipole stabilizer rods
- Established a full fabrication process with domestic companies

Design

Vane machining

Tuning before Brazing

Brazing

Leak test (< 1e-9torr.l/s)

Tuning

Frequency : 349.931 MHz Q field : < ± 2% D field : < ± 5% of Q

7

□ 3MeV RFQ Test

□ Set up for Test of RFQ

Remarks of RFQ test

- RFQ have been fabricated and tuned. (Aug., 2005)
- Full Peak Power RF test has been done. (Oct., 2005)
- Beam test up to 20mA has been done. (Mar., 2008)
- Routinely used for the beam acceleration. (Now)

□ Results of the RF & Beam test

DTL Design

	DTL I	DTL II
Beam Energy (MeV)	3 → 20	20 → 100
Max. Beam Duty (%)	24	8
Max. Repetition Rate (Hz)	120 60	
RF Frequency (MHz)	350	

Beam Dynamics (PARMILA)

Output Beam (PARMILA)

DTL I			DTL II								
Idlik	21	22	23	24	101	102	103	104	105	106	107
E [MeV]	7.18	11.50	15.80	20.00	33.1	45.3	57.1	69.1	80.4	91.7	102.6
Cells	51	39	33	29	34	28	25	23	21	20	19
Length [m]	4.431	4.649	4.755	4.776	6.737	6.707	6.791	6.777	6.777	6.869	6.880
E0 [MV/m]	1.3			2.58							
RF [kW]	225.0	225.0	224.0	221.0	1064.7	1039.3	1040.1	1026.8	1008.1	1004.7	1003.6

DTL Fabrication

• Established a full fabrication process;

from design to field tuning, and RF test

10

PEFP 20 MeV Linac Performance

- 20 MeV of front-end of 100 MeV was completed in 2005
- Extracted first beam (July 2005)
- Obtained operation license (June 2007)
- Started beam service (July 2007)
- Temporary service for users before moving to Gyeongju

MEBT (Medium Energy Beam Transport)

For 20 MeV Beam Extraction,

- \Rightarrow A Long Drift Space between DTL-1 and DTL-2 to place a bending magnet
- \Rightarrow Beam phase matching issue
- Solution: 2 buncher cavities of 3 cells with 4 QMs
 - \Rightarrow QM for transverse matching, and RF for longitudinal matching

MEBT tank parameters

Parameters	Values
Cell number	3
Cell Length	174.0 mm
Gap Length	35.5 mm
Tank Length	522.1 mm
Synchronous Phase	-90 deg.
Power for tank1	33 kW
Power for tank2	14 kW

MEBT Tank Design

Beamline Development

- Completed design of beamlines by reflecting user's requirement
- Different conditions; beam current, size, vacuum/external, hor./ver.
- Developed components (BM, QM, ACM & beam instruments)

TR21

Beam Line	Application Field	Rep. Rate	Avg. Current	Irradiation Condition
TR21	Semiconductor	60Hz	0.6mA	Hor. Ext. 300mmØ
TR22	Bio-Medical Application	15Hz	60μA	Hor. Ext. 300mmØ
TR23	Materials, Energy & Environment	30Hz	0.6mA	Hor. Ext. 300mmØ
TR24	Basic Science	15Hz	60 μA	Hor. Ext. 100mmØ
TR25	Radio Isotopes	60Hz	1.2mA	Hor. Vac. 100mmØ

20 MeV Beamlines

100mmØ

TR22

23

Details of Beam Lines

- AC magnet with 7.5 Hz can distribute beam pulses to 3 beamlins successively
- 3 targets can provide beam simultaneously

Beamline Key Components: AC Magnet & Programmable PS PEFP^{Proten Engineering PEFP^{Proten Engineering Performance Performa}}

AC Magnet for Beam Distribution

Programmable Power Supply

Specifications

Bending angle	±2	20°	
Pole gap (mm)	75		
Max. B filed (T)	0.436 1		
Eff. length (mm)	507		
Max. Current (A)	217.7	501.8	
Op. freq (Hz)	15	7.5	

Waveform of Power Supply

Beamline Key Components: Large Beam Window

ANS

Beam Window

Thermal Analysis

Specification

- Concave type
- AlBeMet (38% Al, 62% Be)
- Diameter: 300 mm
- Thickness: 0.5 mm

Vacuum Protection from window breaking

- Fast closing valve
- Closing time : 15ms
- Max. pressure rising
- : 3.8E-1torr@ 20m length
- : 4.2E-2torr@ before accelerator
- Shock wave velocity : ~1km/s

Target System Development

Target system for radioisotope production for high current & power beam
 Targeted RI: Sr-82, Cu-67, Ge-68 (target material: RbCl, ZnO, Ga)

□ Site Plan and Preparation for the PEFP

1100 m

Gyeong-bu Freeway

Proton Accelerator Research Center

Location: Gyeongju Ground Breaking('09.5)

Area: 44,000m² Completion('12.3) Express Railway (Under construction)

Accelerator Building
Experimental Hall

- ③ Ion Beam Facility
- **4** Utility Building
- **(5)** Substation

(3)

6 Cooling Tower

- ⑦ Water Storages
- 8 Main Office Building
- **9** Regional Cooperation Center
- 10 Dormitory
- **III** Information Center
- 12 Sewage Plant

□ Application Fields with Proton Beams

- Industrial applications ion-cut, power semiconductor devices
- Medical applications BNCT, RI production, proton therapy
- **Biological applications** mutation of plants and microorganisms, micro-beam system, etc.
- Space applications radiation tests of space components and radiation effects, etc.
- Defense applications mine detection, proton & neutron radiography
- Intense neutron source radiation damage study, nuclear materials, target & modulator development, etc.
- MW beam utilization areas
 - Spallation Neutron Sources
 - Muon Source
 - Radioactive Nuclei Beams
- High Energy Physics (mesons, neutrinos)

□ User Program Development (2003 ~)

Research Fields	Sub-categories
Nano Technology	Ion-cutting, Nano-particle fabrication, Carbon nano-tube, Nano-machining
Information Technology	High power semiconductor, Semiconductor manufacturing R&D, etc.
Space Technology	Radiation hard electronic device, Radiation effect on materials
Bio-Technology	Mutations of plants and micro-organisms
Medical research	RI production, Low energy proton therapy study, Biological radiation effects, etc.
Materials Science	Proton irradiation effects with various materials, Gemstone colouring
Energy & Environment	New materials for fuel cell, nano catalyst, organic solar cell, New μ -organism (bio fuel)
Nuclear & Particle Physics	Detector R&D, Nuclear data, TLA (Thin Layer Activation)

* 20 MeV Beam Facility @ KAERI

✤ 45 MeV beam facility @ KIRAMS^{*}

Status of PEFP User Program

- Goals for the user program;
 - Build up a strong community of proton beam users
 - Diversify R&D fields by using proton beams

No. of Proton Beam Users 2002 2003 2004 2005 2006 2007 2008 2009

Irradiated Samples

(20 MeV Linac, MC-50 @ KIRAMS))

User Distribution (R&D Fields)

User Distribution (138 Institutions)

□ R&D Activities (I) – Nano

Fabrication of metallic nano-particles;
 Gold, Platinum, Silver etc

Fabrication of Hybrid Nano-Logic Device
 n-type nanowire + p-type nanotube

Silver nano particle (SEM Images)

Silver nano crystal (Flower) formation

Refer to MOPEA 069

R&D Activities (II) - Medical

Medical RI Production

- Medical RI production using high energy (100MeV) and high current proton beam
- Mass production of many kinds of RI
- Substitution for imported RI

RI products and their applications

Medical RI available

Proton Energy	RI
Low energy (<20MeV)	F-18, C-11, O-15, N-13, Pd-103
Medium Energy	TI-201, Ga-67, I-123, I-124, In-111,
(30~100MeV)	Co-57
High Energy	Al-26, Mg-28, Si-32, Be-7, Na-22,
(>100MeV)	Ge-68, Sr-82, Tc-95, Cu-67

Low Energy Proton Therapy

- Proton therapy machine & technology
- Basic study of proton therapy
- Facility for radiation biological R&D
- Study of proton therapy for eye tumors

Principle of Eye therapy

□ R&D Activities (III) – Bio

Biodegradable Plastic

- Mutant breeding of microorganism
- PHB production using E-coli

Biodegradable Plastic Knife

Mutation Studies

- Mutant Breeding of Vegetables
- Plant breeding of Flowering Tree

Technology transfer was performed at 2008

Mutants of radish (M3)

Chinese cabbage transferred to company

Lagerstroemia indica

□ R&D Activities (IV) – Semiconductor

Power Semiconductor

Control of minority carrier lifetime
High power & speed power semiconductor
FRD, IGBT, BJT etc.

Minority Carrier Lifetime (1/35)

FRD

(Fast Recovery Diode)

IGBT (600V, 5A) And Power IGBT

Ion-cut Technology

- Development of Ion-cut technology
- Manufacture SOI and GOI wafers
- Thin layer of compound semiconductor

Ion-cut Technology

□ R&D Activities (V) – Space & Others

Space Radiation Test

- Radiation hardness test of semiconductor devices for space crafts
- Total Dose Effect, Single Event Effect, etc.

TLA (Thin Layer Activation)

Gemstones Coloration

 Optical property modifications of gemstones by irradiation & heat treatment

□ Activities for the Future

□ Two Extension Options of the PEFP

Proposed by Science & TEchnology Policy Institute (Feb, 2009)

: in a research report on "Long-term Planning for Proton Engineering Frontier Project"

Primary Proton Beam Secondary Neutron Beam

Option 1

I GeV SC Linac + Accumulation Ring

- \Rightarrow 2 MW Spallation Neutron Source
- \Rightarrow 250, 400 Proton Beam

Option 2

- 200 MeV SC Linac + 2 GeV RCS
 - \Rightarrow 0.5 MW Spallation Neutron Source
 - \Rightarrow 250 MeV Proton Beam
- 400 MeV SC Linac + 8 GeV PS
 - \Rightarrow 8 GeV Proton Beam

Superconducting Linac Development

•β=0.42, RF: 700 MHz

- SC Cavity, RF coupler, Tuner, Vacuum Vessel, etc.
- Fabricated & tested a warm module (Cu Cavity)
- Fabricated and tested a 2-cell cold module (Nb Cavity)

< Designed SRF module >

Activities for the Future

Rapid Cycling Synchrotron

Lattice Design

- Injection Energy: 100 (200) MeV
- Extraction Energy: 1 (2) GeV
- Injection : Charge Exchange
- Fast Extraction : Spallation neutron source
- Slow Extraction (~450 MeV): Medical application

Upgrade Path

宣ロ

	Injection [GeV]	Extraction [GeV]	Repetition [Hz]	RF [KV]	Power [KW]
Initial	0.1	1.0	15	80	60
Upgrade #1	0.1	1.0	30	140	120
Upgrade #2	0.1	2.0	30	260	250
Upgrade #3	0.2	2.0	30	250	500

Summary

- > 100 MeV, 20 mA Proton Linac & Beamlines
 - 20 MeV Linac :
 - Completed & in beam service
 - Achieved designed beam energy & current
 - Higher energy part:
 - 20~91 MeV DTL : fabricated and tested
 - 91-100 MeV DTL : under fabrication
 - To relocate the 20 MeV linac to the site from April 2011
 - To complete the 100 MeV linac & beamlines by March 2012

Construction Work

- Under site preparation; leveling along with excavation
- To start construction work in July 2010, accelerator buildings to be completed by June 2011
- Beam Utilization & Applications
 - Cultivated and fostered user programs in the wide range of research fields
 - Produced promising outcomes including some industrialized
- Activities for the Future (a Spallation Neutron Source)
 - R&D in SCL, RCS, RF Power Source, Spallation Neutron Target, and Beam Sharing

Thank you very much for your attention