ILC Marx Modulator Development Program Status

C. Burkhart, A. Benwell, T. Beukers, M. Kemp, R. Larsen, D. MacNair, M. Nguyen, J. Olsen, & T. Tang

SLAC National Accelerator Laboratory

1st International Particle Accelerator Conference May 23-28, 2010

Overview

- Motivation for Solid-State Marx for ILC
- P1-Marx
- P2-Marx
- Summary

Solid-State Marx Topology

- Charge (parallel) discharge (series) configuration controlled by solid-state elements, diodes and IGBTs
- Charge switch anti-parallel diode provides by-pass for delayed cells to compensate for voltage droop
- Highly evolved Marx (1924): well regulated output

ILC Klystron Modulator Parameters

- Pulse Voltage:
- Voltage Regulation:
- Pulse Current:
- Pulse Length [flat-top]:
- Total Pulse Energy:
- Repetition Rate:
- Average Output Power:
- Total # of RF Stations:

120 kV $\pm 0.5\%$ 140 A 1.6 ms 27 kJ 5 Hz 135 kW 576

Design Considerations (Why Marx?)

- Cost
 - Modular design simplifies fabrication
 - Active droop compensation reduced energy storage
 - Eliminate high voltage 1.6 ms-pulse transformer
- Reliability
 - Solid-state is intrinsically long-life
 - High Availability (HA) architecture: allows system
 MTBF to exceed component MTBF
 - Redundant, modular design
 - Intelligent control

Design Considerations (Why Marx?)

- Serviceability
 - Modularity reduces spare inventory and simplifies service
 - Intelligent control identifies eminent repairs and specific faults
 - Accessibility minimizes MTTR
- Performance
 - Active output regulation, compensate load variation
 - Eliminating transformer increases energy efficiency

US-DOE Funded ILC Marx Modulators

	SLAC P1	Diversified Technologies	ISA Corp.	SLAC P2
Cell Voltage	11 kV	6 kV	3.5 kV	3.75 kV
Number of Cells	16 (11 prompt) (5 delay)	20	42 (35 prompt) (7 delay)	32
Redundancy	N+1	N+3	N+1	N+2
Regulation	Vernier (16) 1.2 kV + Delay	(16) 0.9 kV Correction cells	Vernier (16) 0.5 kV + Delay	Regulated cell (PWM correction)
Status	Extended life testing	→ SLAC for life testing	"Finished" full voltage, no correction	Testing prototype cell, complete FY11

SLAC P1-Marx

- 1st Generation SLAC Design for ILC Application
- Demonstrated Efficacy of the Marx for ILC
 - Active output regulation
 - HA features
 - 93% efficiency (modulator losses 7%)
- Undergoing Extended Life Testing

P1-Marx Construction

MARX MODULATOR -- STRUCTURAL DETAIL

P1 Main Cell Construction

P1 Vernier Cell Construction

P1 Control System

CPLD-based Cell Diagnostic & Control Module

EPICS-based Modulator Control Interface

16-Channel FPGA-based Control System IOC

L-Band Test Stand

P1 Operation: Prompt-Main Cells Only

P1 Operation: Main Cells, Prompt+Delay

P1 Operation: Full Vernier Regulation

P1 Operational History

- 1450 hours (60 days) integrated operation with klystron [additional ~400 hours with test load]
- Maintenance downtime: replace energy storage capacitors damaged by improper voltage grading

SLAC P2-Marx

- 2nd Generation Design Builds on P1 Experience and Success
- Prototype Cell Undergoing Testing
- Expected Completion in FY11

Design Evolution to the P2-Marx

- Improved HA architecture
 - Truly modular topology; single repeated cell design
 - Droop compensation (via PWM) integrated into each cell
 - Cells fail to by-pass mode
 - 4 kV cell voltage eliminates series switch arrays
 - Enhanced control system with increased diagnostic and prognostic capabilities
- Engineering refinements
 - Reliability evaluation: 10⁵ hour life
 - Voltage margin on silicon
 - Capacitor energy density
 - Decreased overall size by ~20%

P2 Cell: Simplified Schematic

- Basic cell circuit similar to P1
- Correction circuit (shaded) PWM compensates droop as C1 discharges
- Output=∑C1+Cf1
 = constant

P2 Output Voltage Regulation

P2 Cell Control System

Photo of P2 Cell

Conceptual Design of P2-Marx

Summary

- Performance improvements achieved with solid-state modulators offsets increased development costs for a broad range of applications
- 1st generation modulator validates benefits of Marx topology for ILC application
- Subsequent generations of solid-state modulators will deliver enhanced performance with improved sustainability

Acknowledgements

- The authors wish to acknowledge the significant contributions of the following researchers to the SLAC Marx development program
 - D. Anderson
 - P. Blum
 - C. Brooksby (LLNL)
 - R. Cassel
 - E. Cook (LLNL)
 - G. Leyh
 - K. Macken
 - M. McDougald (Blue Lake Consulting)
 - D. Moreno
 - P. Shen
 - A. Viceral
- Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515

