
High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

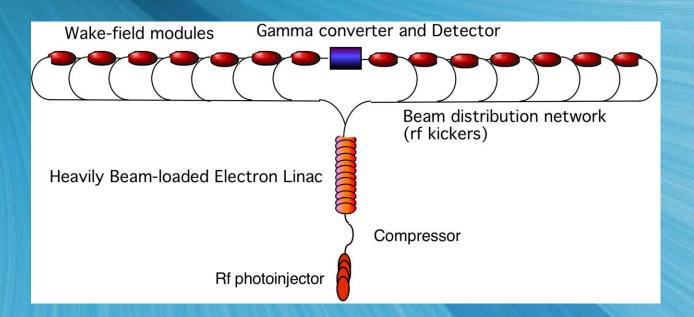
J.B. Rosenzweig UCLA Dept. of Physics and Astronomy

> Kyoto, IPAC 2010 May 26, 2010

Scaling the accelerator in size Lasers produce copious power (~J, >TW) Scale in λ by 4 orders of magnitude λ < 1 μm gives *challenges* in beam dynamics Reinvent resonant structure using *dielectric* (E163, UCLA) GV/m fields possible, breakdown limited...

Resonant dielectric laser-excited structure (with HFSS simulated fields)

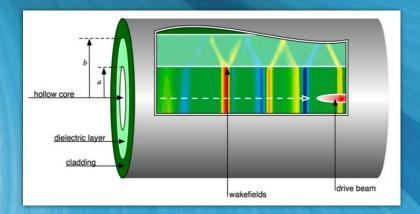
GV/m allows major reduction in size, cost
To jump to GV/m, mm-THz may be better:

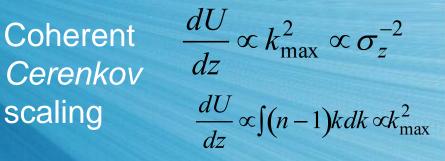

- Beam dynamics, breakdown scaling
- Must have new source...

Promising paradigm for high field accelerators: wakefields

Coherent radiation from bunched, v~c, e beam
Any slow-wave environment
Powers exotic schemes: plasma, dielectrics
Resonant or non-resonant (short pulse) operation
High average power beams can be produced
Tens of MW, beats lasers...
Intense beams needed by many fields

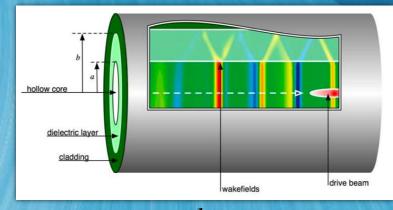
- X-ray FEL
- X-rays from Compton scattering
- THz sources

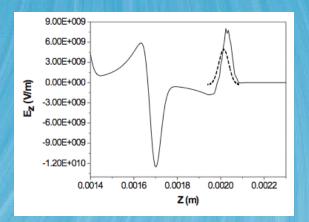

Schematic of wakefield-based collider


J. Rosenzweig, *et al., Nucl. Instrum. Methods A* **410 532 (1998).** (concept borrowed from W. Gai...)

Similar to original CLIC scheme
Study for plasma wakefield accelerator
γγ due to charge asymmetry in PWFA
Not a problem for DWA...

The dielectric wakefield accelerator


Cerenkov scaling


High accelerating gradients: GV/m level \diamond

- Dielectric based, low loss, short pulse
- Higher gradient than optical?
- Unlike plasma, charged particles in beam path...
- Use wakefield collider schemes
 - CLIC style modular system
 - *Afterburner* (energy multiplier) possible for existing accelerators
- Spin-offs
 - High power THz radiation source (e.g. E. Chiadroni)

Dielectric Wakefield Accelerator Overview

Design Parameters *a*, *b*

 σ_{π}

E

Electron bunch ($\beta \approx 1$) drives wake in cylindrical dielectric structure Dependent on structure properties Generally multi-mode excitation Wakefields accelerate trailing bunch Mode wavelengths (quasi-optical $\lambda_n \approx \frac{4(b-a)}{n}\sqrt{\varepsilon-1}$

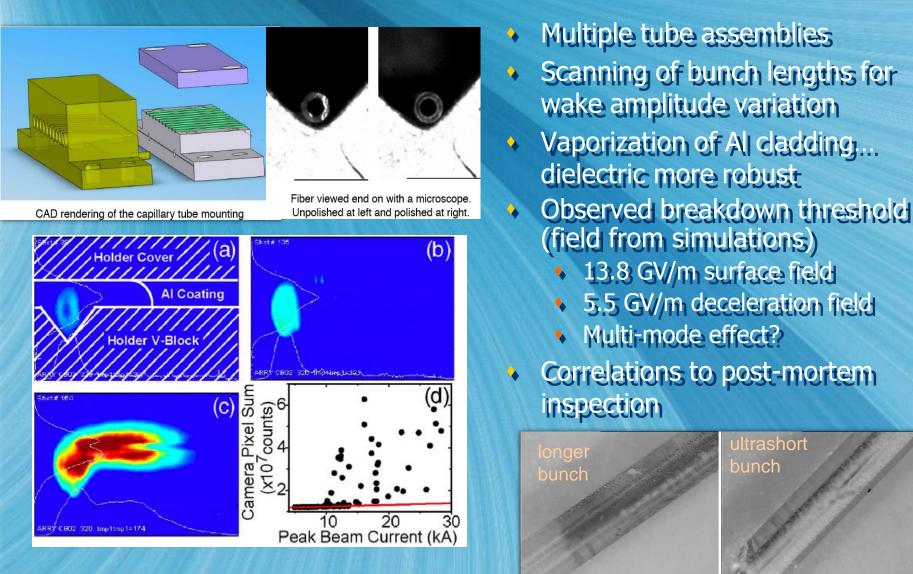
Peak decelerating field $eE_{z,dec} \approx \frac{-(N_b)m_ec^2}{\sqrt{\frac{8\pi}{\varepsilon-1}\varepsilon\sigma}+a}$

Extremely good beam needed

Transformer ratio (unshaped beam)

$$R = \frac{E_{z,acc}}{E_{z,dec}} \le 2$$

Ez on-axis, OOPIC


T-481: Test-beam exploration of breakdown threshold

- 1st ultra-short, high charge beams
- Beyond pioneering work at ANL...
 - Much shorter pulses, small radial size
 - Higher gradients...
- Leverage off E167 PWFA
- Goal: breakdown studies
 - Al-clad fused SiO₂ fibers
 - ID 100/200 μm, OD 325 μm, L=1 cm
 - Avalanche v. tunneling ionization
 - Beam parameters indicated E_z ≤12GV/m can be excited
 - 3 nC, σ_z ≥ 20 μm, 28.5 GeV
- 48 hr FFTB run

T-481 "octopus" chamber

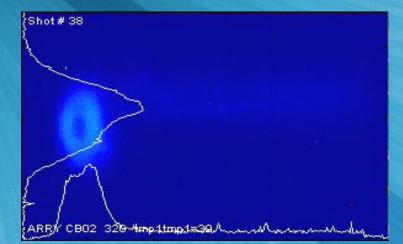
Methods and Results

Methods and Results

PRL 100, 214801 (2008)

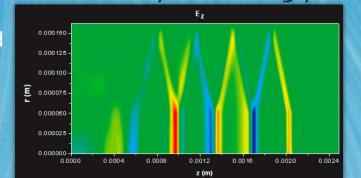
PHYSICAL REVIEW LETTERS

week ending 30 MAY 2008


Breakdown Limits on Gigavolt-per-Meter Electron-Beam-Driven Wakefields in Dielectric Structures

M. C. Thompson,^{1,2,*} H. Badakov,¹ A. M. Cook,¹ J. B. Rosenzweig,¹ R. Tikhoplav,¹ G. Travish,¹ I. Blumenfeld,³
 M. J. Hogan,³ R. Ischebeck,³ N. Kirby,³ R. Siemann,³ D. Walz,³ P. Muggli,⁴ A. Scott,⁵ and R. B. Yoder⁶

¹Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA ²Lawrence Livermore National Laboratory, Livermore, California 94551, USA ³Stanford Linear Accelerator Center, Menlo Park, California 94025, USA ⁴University of Southern California, Los Angeles, California 90089, USA ⁵University of California, Santa Barbara, California 93106, USA ⁶Manhattan College, Riverdale, New York 10471, USA (Received 20 January 2008; published 27 May 2008)


First measurements of the breakdown threshold in a dielectric subjected to GV/m wakefields produced by short (30–330 fs), 28.5 GeV electron bunches have been made. Fused silica tubes of 100 μ m inner diameter were exposed to a range of bunch lengths, allowing surface dielectric fields up to 27 GV/m to be generated. The onset of breakdown, detected through light emission from the tube ends, is observed to occur when the peak electric field at the dielectric surface reaches 13.8 ± 0.7 GV/m. The correlation of structure damage to beam-induced breakdown is established using an array of postexposure inspection techniques.

Beam Observations and Analysis

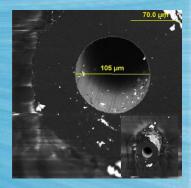
View end of dielectric tube; frames sorted by increasing peak current

Breakdown determined by benchmarked OOPIC simulations

Breakdown limit: 5.5 GV/m decel. field

Multi-mode excitation – short, separated pulses — gives better breakdown dynamics

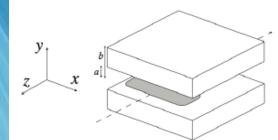
E169 Collaboration



UCLA

H. Badakov^{α}, M. Berry^{β}, I. Blumenfeld^{β}, A. Cook^{α}, F.-J. Decker^{β}, M. Hogan^{β}, R. Ischebeck^{β}, R. Iverson^{β}, A. Kanareykin^{ϵ}, N. Kirby^{β}, **P.** Muggli^{γ}, J.B. Rosenzweig^{α}, R. Siemann^{β}, M.C. Thompson^{δ}, R. Tikhoplav^{α}, G. Travish^{α}, R. Yoder^{ζ}, D. Walz^{β} ^{*a}Department of Physics and Astronomy, University of California, Los Angeles*</sup> ^{*B}</sup>Stanford Linear Accelerator Center*</sup> ^{*y}University of Southern California*</sup> ⁸Lawrence Livermore National Laboratory ⁵*Manhattanville College* ^{*ɛ*}Euclid TechLabs, LLC **Collaboration spokespersons**

E169 at FACET: overview

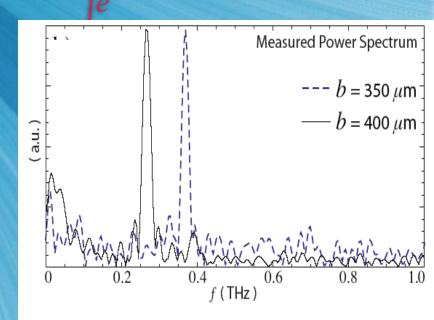

- Research GV/m acceleration scheme in DWA
- Goals
 - Explore breakdown issues in detail
 - Determine usable field envelope
- Already explored At UCLA
- Coherent Cerenkov radiation measurements
- Explore alternate materials
- Explore alternate designs and cladding
 - Slab structure (permits higher Q, low wakes)
 - Radial and longitudinal periodicity...
- Varying tube dimensions
 - Impedance change
 - Breakdown dependence on wake pulse length
- Awaits FACET construction
 - Reapproval needed
 - Add AWA group to collaboration

CVD deposited diamond

Bragg fiber

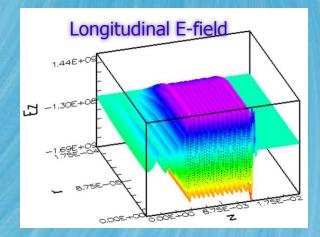
Observation of THz Coherent Cerenkov Wakefields @ Neptune

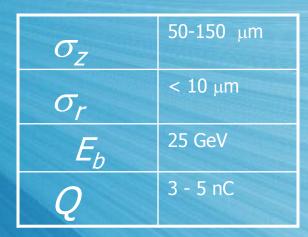
Chicane-compressed (200 μm) 0.3 nC beam


- Focused with PMQ array to σ_r~100 μm (*a*=250 μm)
- Single mode operation
 - Two tubes, different b, THz frequencies
 - Extremely narrow line width in THz
 - Higher power, lower width than THz FEL

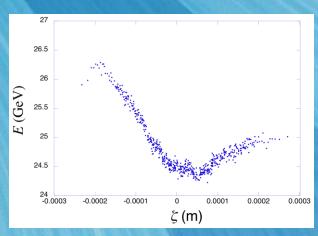
Observation of THz Coherent Cerenkov Wakefields @ Neptune

Chicane-compressed (200 μm) 0.3 nC beam


- Focused with PMQ array to σ_r~100 μm (a=250 μm)
- Single mode operation
 - Two tubes, different *b*, THz frequencies
 - Extremely narrow line width in THz
 - Higher power, lower width than THz FEL

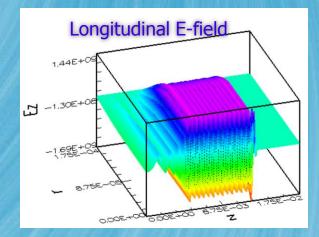


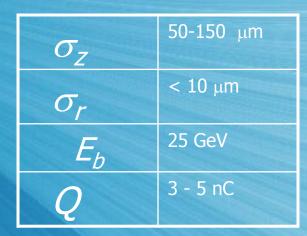
E-169 at FACET: Acceleration


Observe acceleration

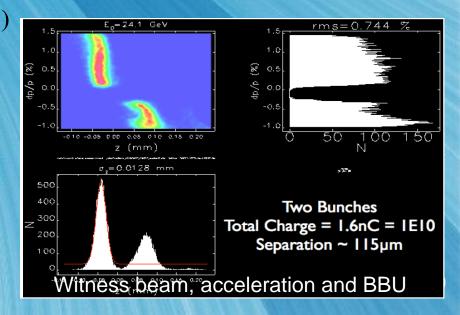
- ✓ 10-33 cm tube length
- Ionger bunch, acceleration of tail
- ✓ "moderate" gradient, 1-3 GV/m
- ✓ single mode operation
- Phase 3: Accelerated beam quality
 ✓ Witness beam
 - ✓Alignment, transverse wakes, BBU
 - ✓ Group velocity & EM exposure $t = L/(c v_g)$
 - ✓ Positrons. Breakdown is different?

FACET beam parameters for E169: acceleration case

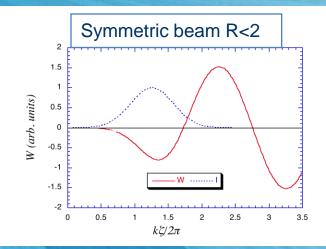


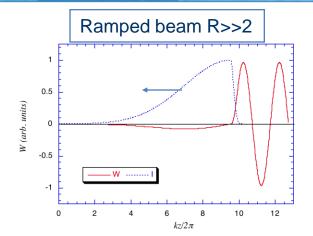

Momentum distribution after 33 cm (OOPIC)

E-169 at FACET: Acceleration

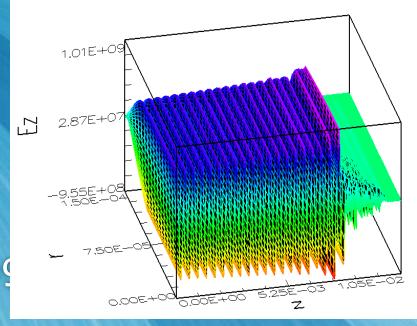

Observe acceleration

- ✓ 10-33 cm tube length
- Ionger bunch, acceleration of tail
- ✓ "moderate" gradient, 1-3 GV/m
- ✓ single mode operation
- Phase 3: Accelerated beam quality✓ Witness beam
 - ✓Alignment, transverse wakes, BBU
 - ✓ Group velocity & EM exposure $t = L/(c v_p)$
 - ✓ Positrons. Breakdown is different?

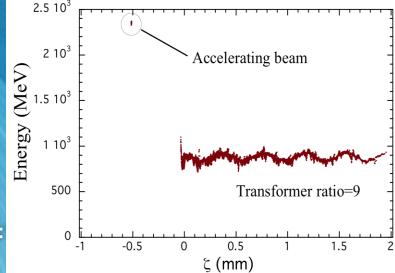



FACET beam parameters for E169: acceleration case

A High Transformer Scenario using Dielectric Wakes

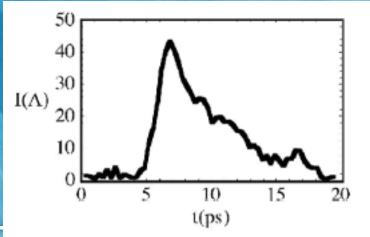

How to reach high energy with DWAs? Enhanced transformer ratio with ramped beam Does this work with multimode DWA? Scenario: 500-1000 MeV ramped driver; 5-10 GeV FEL injector in <10 m

A FACET test for light source scenario


Beam parameters: Q=3 nC, ramp *L*=2.5 mm, *U*=1 GeV • Structure: $a=100 \mu m$, *b*=100 μm, *ε*=3.8 Fundamental *f*=0.74 THz Performance: E_r>GV/m, R=9 10 (10 GeV beam) Ramp achieved at UCLA. Possible at ATF, FACET?

Sag in wake due to multi-mode

A FACET test for light source scenario


Beam parameters: Q=3 nC, ramp *L*=2.5 mm, *U*=1 GeV • Structure: $a=100 \mu m$, *b*=100 μm, *ε*=3.8 Fundamental *f*=0.74 THz Performance: E₇>GV/m, R= 10 (10 GeV beam) Ramp achieved at UCLA. Possible at ATF, FACET?

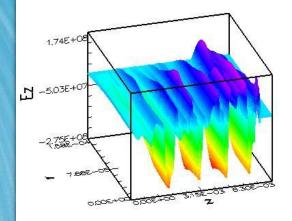
Longitudinal phase space after 1.3 m DWA (OOPIC)

A FACET test for light source scenario

Beam parameters: Q=3 nC, ramp *L*=2.5 mm, *U*=1 GeV • Structure: $a=100 \ \mu m$, *b*=100 μm, *ε*=3.8 Fundamental *f*=0.74 THz Performance: E₇>GV/m, R=9-10 (10 GeV beam) Ramp achieved at UCLA. Possible at ATF, FACET?

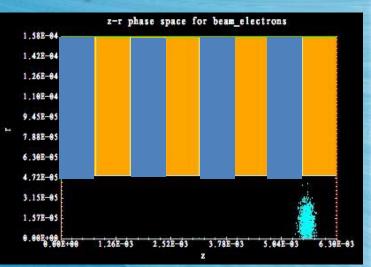
Ramped beam using sextupole-corrected dogleg compression

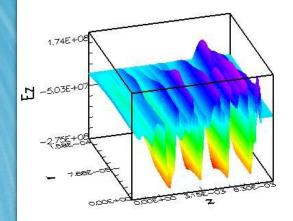
R. J. England, J. B. Rosenzweig, and G. Travish, PRL 100, 214802 (2008)


Multipulse operation: control of group velocity

 Multiple pulse beam-loaded operation in linear collider, needs low v_a

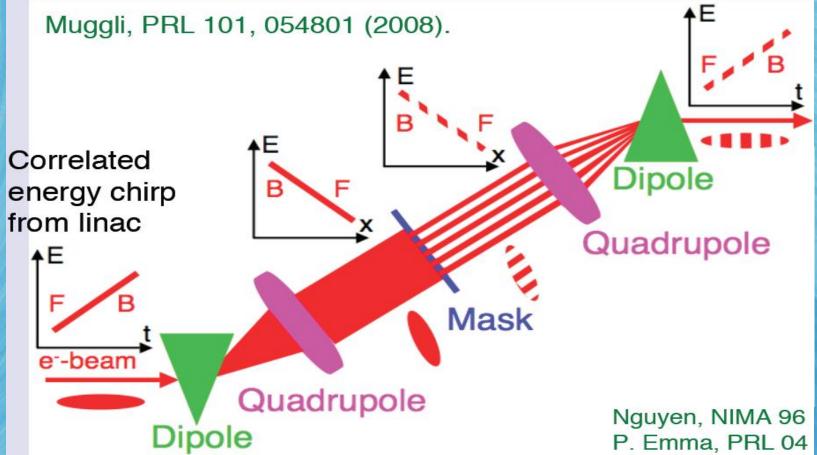
Accelerating beam Driving beam
Low charge gives smaller (low ε), shorter beams
Can even replace large Q driver
Use *periodic DWA* structure in ~π-mode, resonant excitation


Example: SiO₂/diamond structure


Multipulse operation: control of group velocity

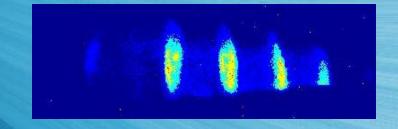
 Multiple pulse beam-loaded operation in linear collider, needs low v_q

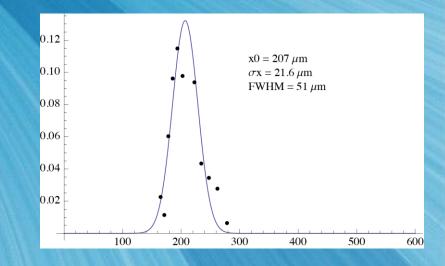
Accelerating beam Charge gives smaller
Low charge gives smaller (low ε), shorter beams
Can even replace large Q driver
Use *periodic DWA* structure in ~π-mode, resonant excitation



Example: SiO₂/diamond structure

Initial multi-pulse experiment: uniform SiO₂ DWA at BNL ATF


Exploit Muggli pulse train slicing technique

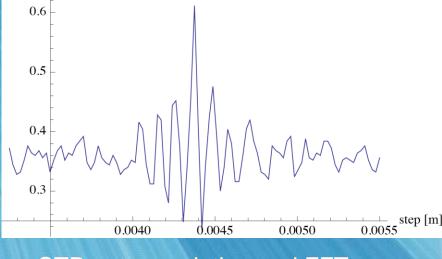

First results from BNL multi-pulse experiments

Array of 1 cm tubes

- Si02, diamond!
- 325-660 μm λ
- Operation of pulse train with both chirp signs
 - Sextupole correction used
 - CTR autocorrelation
- Single bunch wakes observed
- Next: resonant wake excitation, CCR

4-drive + witness in spectrometer

CTR autocorrelation and FFT


First results from BNL multi-pulse experiments

Array of 1 cm tubes

- Si02, diamond!
- 325-660 μm λ
- Operation of pulse train with both chirp signs
 - Sextupole correction used
 - CTR autocorrelation
- Single bunch wakes observed
- Next: resonant wake excitation, CCR

Single drive spectrum shows acceleration and deceleration

CTR autocorrelation and FFT

To a GV/m: multiple pulse DWA experiment at SPARC/X (LNF) • Uses laser comb technique Bunch periodicity: z-r phase space for beam electron 7.50E-05 190 μm (0.63 ps) 6.96E-05 6.43E-05 5.89E-05 • 0.5 of BNL case 5.36E-05 4.82E-05 4.29E-05 Scaled structure 3.75E-05 3.21E-05 2.68E-05 125 pC/pulse @ 750 MeV 2.14F-05 1.61E-05 1.07E-05 • 4 pulses + witness 5.36E-0 1.17E-03 2.92E-03 4.67E-03 I GV/m, energy doubling in <70 cm

To a GV/m: multiple pulse DWA experiment at SPARC/X (LNF) • Uses laser comb technique Bunch periodicity: 190 μm (0.63 ps) 1.13E+C • 0.5 of BNL case 9.71E+0 Scaled structure 125 pC/pulse @ 750 MeV • 4 pulses + witness 1 GV/m, energy doubling >1.1 GV/m wakes in scaled DWA@SPARX in <70 cm

Conclusions

Very promising technical approach in DWA

- Physics surprisingly forgiving thus far
- Looks like an accelerator!
- Many open questions still to resolve for GV/m
- Pushing towards applications
 - Linear collider: multi-pulse

FEL: booster for reaching hard X-rays in few m

- Expect rapid experimental progress
 - 1st ATF; then FACET, SPARC/X...