Experience and Lessons with the SNS Superconducting Linac

Yan Zhang

on behalf of the SNS team

Managed by UT-Battelle for the Department of Energy May 24, 2010, 1st IPAC, Kyoto, Japan

Acknowledgements

S. Henderson, J. Galambos, R. Campisi, J.G. Wang, S. Kim, Y. Liu, and all others of the SNS accelerator team

2 Managed by UT-Battelle for the Department of Energy

Presentation_name

Outline

- Introduction to the SNS Linac
- Achievements and Lessons
- > Transverse Beam Dynamics
- Longitudinal Beam Dynamics
- Summary

Introduction

Achievements in the First 5-Year

Power on Target

Beam Loss and Residual Activation

- Activation was once higher during the beam power ramp up
- Currently not beam loss limited, and may not up to 1.44 MW

Presentation_name

tional Laboratory

SNS Major Parameter

PARAMETER	Design	Best Achieved	Production
Beam Energy (GeV)	1.0	1.01	0.93
Peak Current (mA)	38	42	42
Repetition Rate (Hz)	60	60	60
Pulse Length (ms)	1.0	1.0	0.8
Proton per Pulse	1.5×10 ¹⁴	1.55×10 ¹⁴	1.1×10 ¹⁴
Number of Cavities	81	80	80
RF Duty Factor (%)	8	7	7
Power on Target (MW)	1.44	1.08	1.08
Availability (%)	90	85	85

National Laboratory

Lessons Learned with the SCL

HOM Coupler of SNS Cavity

High Beta (0.81) Cavity

10 Managed by UT-Battelle for the Department of Energy

Medium Beta (0.61) Cavity

- Issues with fundamental RF filtering
- No significant HOM power measured
- Costs more than potential benefits

Presentation_name

Linac Beam Collimator

There is no beam collimator installed in the linac

- Multi-particle tracking simulations did not show loss, fractional beam loss was estimated to be < 1×10⁻⁵
- Measured SCL beam loss might be 1×10⁻⁴

Some factors, e.g, residual gas and magnet stripping, were considered. But some others, not investigated

- 1). Beam longitudinal halo
- 2). Dodecapole components of linac quadrupole
- 3). Intrabeam stripping
- SCL is not loss limited, but collimator could be helpful

Intrabeam Stripping (V. Lebedev, FNAL)

Dodecapole Field of SCL Quadrupole

- 1 unit dodecapole equals to 1×10⁻⁴ of quadrupole field
 Measured SCL quadrupole is approximately 30 units
- They may cause ~ 3×10⁻⁴ fractional beam loss in SCL

13 Managed by UT-Battelle for the Department of Energy

Presentation_name

Transverse Beam Dynamics

Maximum emittance in doublet lattice, no space charge, no cavity
 The weak resonance appears only when dodecapole is significant

Presentation_name

- Quadrupoles in production are 20 to 30% lower than the design
- Manual adjustment for beam loss results a non-smooth lattice

Presentation_name

All the three beam loss mechanisms favor strong focusing

OAK RIDGE National Laboratory

Laser Wire Beam Profile Monitor (Y. Liu, MOPE101)

3.00E0 Before Matching 2.50E0 Size 2.00E0 (mm) 1.50E0 1.00E0 5.00E-1 6.67E1 3.33E1 1.00E2 1.33E2 1.67E2 2.00E2 0.00E0 Z (m) Red, X; blue, Y Dots, LW; line, model 4.00E0 After Matching 3.00E0 Size_{2.00E0} (mm) 1.00E0 0.00E0 3.33E1 6.67E1 1.00E2 1.33E2 1.67E2 0.00E0 2.00E2 Z (m)

Transverse Matching

Online beam matching with the control room envelope model
 Very time consuming, and the online model is not so accurate
 A well matched beam does not necessarily reduce beam loss

Presentation_name

ational Laboratory

for the Department of Energy

Beam Phase For the 6 Cells in Each Cavity

- Many cells are close to the RF crest, not a linear defocusing
- High-gradient SC cavity has a large aperture, not a thin-lens
- Multi-particle tracking is too slow, not for online application

Presentation_name

Longitudinal Beam Dynamics

Phase Damping

Phase Scaling 140 3500 To upstream cavity 120 3000 ē Integrated phase 100 2500 କ୍ରି Ð Phase Shift (deg) **P** 80 2000 **P** 1 1 1 1 ፈ 1500 60 1000 <u>b</u> 40 20 500 ès as 0 21 31 51 61 71 81 1 11 41 Cav

Model based RF phase scaling technique

From 900 MeV to 1 GeV, the acceleration gradient of many cavities change, integrated shift of beam phase is > 3000°.

- SCL cavity and RF failure recovery
- Application in other longitudinal beam dynamic study

Measurement

Longitudinal Emittance

- Phase and energy scans:
 bunch size and energy spread
- Beam emittance scans: isodensity contours
- Design: ~0.3 mm*mrad; measurements: 0.4 to 0.9

Longitudinal Halo

- Beam current monitor and beam loss monitor measurements
- Scan in different directions, such as, beam phase and energy
- Measured halo size is usually comparable to the acceptance

Presentation_name

The first 5-year of beam commissioning and operation of the SNS superconducting linac has been a great success.

> Hardware:

 Keep every component simple
 System reliability rather than individual performance is important to a success

- Beam dynamics:
 - 1) Small level (1×10-4) of beam loss is observed
 - 2) Very difficult to accurately model or measure
 - 3) Need more works, both simulation and experiment

