

THE PIERRE AUGER OBSERVATORY: COSMIC ACCELERATORS AND THE MOST ENERGETIC PARTICLES IN THE UNIVERSE

Johannes Blümer

KIT-Center Elementary Particle and Astroparticle Physics KCETA

 π^0 decay feeds electromagnetic part π^{\pm} decay feeds muonic part

element abundances: 15 My in galaxy & halo energy density ~like light, magnetic field, CMB; equiv. to 3 SN/ century at 10% eff. powerlaw spectrum $dN/dE \sim E^{-3}$ 10 decades in energy; flux range very large stochastic acceleration in shocked plasma, confined by mag. fields knee: p drop out first; end of SN acceleration? isotropic directions ankle: harder component, extraglactic GZK: flux suppression above 60 EeV composition? sources? propagation? particle physics?

acceleration to 100 EeV using LHC technology would require Mercury's orbit; acceleration time:>800 years...

American Museum & Natural History 🏵

fluorescent detectors surface detectors

The surface detectors are self-calibrating by single muons VEM = Vertical Equivalent Muon

correct for attenuation of the shower as function of zenith angle!

the depth of the shower maximum, X_{max} , is the best estimator for the primary mass

energy spectrum: convoluted information about sources, propagation, particle id

shower profiles: best estimator for the mass of the primary particle

very small fluctuations... all showers develop alike???

photon and neutrino limits

photon showers have a distinct shape and can be 'readily' identified only neutrino induced showers can have large zenith angles (~ 90°) and still interact close to the detector

this limits the 'exotic models'...

In total **27 events** measured at E > 57 EeV **out of which 20 correlate**

5.6 expected (p=0.21) Net chance for isotropic distr. $P < 10^{-5}$

Correlation of the Highest-Energy Cosmic Rays with Nearby Extragalactic Objects

Journalists: "cosmic rays come from black holes".

Auger:

... We have demonstrated the **anisotropy** of the arrival directions of the highest-energy cosmic rays and their **extragalactic origin**. Our observations are **consistent** with the hypothesis that the rapid decrease of flux measured by the Pierre Auger Observatory above 60 EeV is due to the **GZK effect** and that most of the cosmic rays reaching Earth in that energy range are **protons** from **nearby astrophysical sources**, either AGN or other objects with a similar spatial distribution....

equal exposure polar projection: 2007 same data as Science paper

AGN

Auger events E > 3 EeV

Auger events E > 55 EeV

Distribution of angular separations between the 58 events with E > 55 EeV and the closest AGN in the VCV catalog within 75 Mpc

[Auger ICRC 2009]

Preliminary conclusions

- First precise energy spectrum from 1 EeV to above 100 EeV
- Fluorescence detection of showers sets the energy scale to ± 22%,
 - biggest contribution from absolute fl. yield
- Ankle at 2-3 EeV: transition from galactic to extragalactic cosmic particles
- Flux suppression at 50-60 EeV: GZK effect or maximum accelerator energy?
- With increasing energy air showers develop higher up in the atmosphere and show less fluctuations – astrophysics and/or particle physics? E.g. heavier particles or higher cross section?
- arrival directions of cosmic rays become abruptly anisotropic above 50-60 EeV, in coincidence with the flux suppression.
- cosmic ray arrival directions correlate with the distribution of nearby (<75 Mpc) extragalactic objects; several reference maps are being tested. The correlating fraction is (38 ± 6)% [was (69⁺¹¹-13)% initially].
- The reference-free anisotropy is a robust feature.

"This could be the discovery of the century. Depending, of course, on far down it goes."

Auger had always been designed as a two-instrument, full-sky coverage cosmic ray observatory

4400 tanks on 20.000 km² 39 telescopes

	Auger South	Auger North
Location	35° S, 69° W	38° N, 102° W
Altitude	1,300 - 1,500 [m a.s.l.	1,300 [m a.s.l.]
Area	3,000 km ²	20,000 km ²
Number of SD stations	1,600	4,000
(infill)		(400)
SD spacing	1,500 m	2,300 m
(infill)		(1,600 m)
PMT sensors / SD station	3	1
Communications network	SD-tower radio	peer-to-peer
SD array 50% efficient at	0.7-1 EeV	8-10 EeV
SD array 100% efficient at	3 EeV	80 EeV
FD stations	4	5
FD telescopes	$24 (4 \times 6)$	39 (2 × 12 + 2 × 6 + 1 × 3)
Begin construction	1999	2012
End construction	2008	2016

International Space Station (ISS)

Fluorescence

JEM-EUSO

Extensive Air Shower (EAS)

Final conclusions

- First precise energy spectrum from 1 EeV to above 100 EeV
- Optical fluorescence detection of showers set the **energy scale** to ± 22%,
 - biggest contribution from absolute fl. yield
- Ankle at 2-3 EeV: transition from galactic to extragalactic cosmic particles
- Flux suppression at 50-60 EeV: GZK effect or maximum accelerator energy?
- With increasing energy air showers develop higher up in the atmosphere and show less fluctuations – astrophysics and/or particle physics? E.g. heavier particles or higher cross section?
- arrival directions of cosmic rays become abruptly anisotropic above 50-60 EeV, in coincidence with the flux suppression
- cosmic ray arrival directions correlate with the distribution of nearby (<75 Mpc) extragalactic objects; several reference maps are being tested. The correlating fraction is (38 ± 6)% [was (69+11-13)% initially] -- need more data</p>
- Many open important questions remain to be answered Auger North is needed with a much larger (x7) aperture. A complementary approach (detection from space, ~less precise, even larger statistics) is JEM-EUSO.

