Next Generation B-factories

Mika Masuzawa (KEK)

Contents

 Introduction •PEP-II & KEKB What we have achieved Next Generation B-factories Strategies for higher luminosity Design concept SuperB SuperKEKB

Summary

What we, PEP-II and KEKB, have achieved

We have operated the world's highest luminosity e^+e^- colliders with stored beam currents > 1A.

•Establishment of technology of key components, such as RF, vacuum and beam monitors, to handle multi-ampere beam currents.

- Operation with crossing angle, and crab cavities (KEKB).
 Proof that IR configuration with permanent magnets (PEP-II) / superconducting magnets (KEKB) works.
- Detector backgrounds at manageable level with continuous (trickle-charge) injection scheme.
- Demonstration of effectiveness of solenoids against electron clouds.
- Benchmarks for simulations made and further understanding of beam dynamics obtained.

What we, PEP-II and KEKB, have achieved

Next Generation B-factories

Q: How many years would we need to accumulate 50 ab⁻¹ (the target given by the physics community) IF we kept running the present KEKB?

A: With the current peak luminosity of $2x10^{34}$ cm⁻²s⁻¹ $\Rightarrow 0.3 ab^{-1}/year$ (assuming 1.5×10^7 seconds/year running) $\Rightarrow 167$ years.

Need for <u>much higher</u> luminosity machines: Next Generation B-factories

⇒Two projects:

SuperB and SuperKEKB

Next Generation B-factories

Global efforts for Next Generation B-factories

Strategies for higher luminosity

•The design work has been going on for a while for both SuperB and SuperKEKB.

•The designs and parameters are not yet finalized.

 Information is being exchanged between the two groups, learning from each other and improving the designs.

•Please note that all the numbers are still somewhat preliminary.

Three major factors determining luminosity:

	Our initial approaches : Extrapolations of PEP-II & KEKB							
	More beam currents Crab crossing Higher ξ _y Somewhat reduced β _v *	⇒	larger power consumption					
	Shorter bunch length \Rightarrow Challenges from HOM heating							
	energen genergen	⇒	Bunch lengthening due to Coherent					
and the second s	Synchrotron Radiation (CSR).							
	Low emittance ("nano-beam") scheme ⇒ first proposed by P. Raimondi for SuperB.							
Collision with very small spot-size beam.								

Introduction to SuperB

SuperB Project

 SuperB aims at the construction of a very high luminosity (1x 10³⁶ cm⁻² s⁻¹) asymmetric e⁺e⁻ flavor factory with a possible location on or near the campus of the University of Rome at Tor Vergata or the site of the INFN Frascati National Lab.

• Aims:

- •Very high luminosity (~10³⁶)
- •Flexible parameter choices.
- •High reliability.
- •Longitudinally polarized beam (e⁻) at the IP (>80%).
- Ability to collide at the Charm threshold.

Slide by P. Raimondi at SuperB WS Dec.9, modified.

Next Generation B-factories IPAC10

From M. Biagini

Flexible lattice:

The following 4 sets of parameters were presented at the last SuperB workshop.

1.Baseline 2.High current 3.Low emittance 4.Tau-charm in the vicinity of $E_{c.m.} = 3.8$ GeV

SuperB Parameters

		Base	Line	Low Emittance		High Current		Tau/Charm (prelim.)		
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LEP (e-)	Tau/charm
LUMINOSITY	cm ⁻² s ⁻¹	1.00E	+36	1.00	E+36	1.00	E+36	1.00E	+35	
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61	threshold running
Circumference	m	1258.4		1258.4		1258.4		4258.4		at 1035
X-Angle (full)	mrad	66		66		66		66		at 10°°
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	Description of
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	Baseline +
β _γ @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533	other 2 options:
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	, al ower y emittenee
e _x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82	•Lower y-emiliance
e _x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4	 Higher currents
ε _y	pm	5	6.15	2.5	3.075	10	12.3	13	16	(twice hunches)
σ _x @ IP	μm	7.211	8.872	5.099	0.274	10.060	12.370	18.749	23.076	(twice bullches)
σ _y @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092	
Σ _x	μm	11.433		8.085		15.944		29.732		
Σν	μm	0.050		0.030		0.076		0.131		Baseline:
σ _L (0 current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36	•Higher emittance
σ _L (full current)	mm	5	5	5	5	4.4	4.4	5	5	
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766	due to IBS
Buckets distance	#	2			2			1		•Asymmetric beam
lon gap	%	2		1	2	2		2		, asymmetric beam
RF frequency	Hz	4.76E	+08	4.76E+08		4.76E+08		4.76E+08		currents
Harmonic number		199	98	19	98	19	98	199	8	
Number of bunches		97	8	97	78	19	56	195	i6	_
N. Particle/bunch		5.08E+10	6.56E+10	3.92E+10	5.06E+10	4.15E+10	5.36E+10	1.83E+10	2.37E+10	
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080	RE nower includes
Tune shift y		0.0970	0.0971	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910	
Long. damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6	SR and HOM
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.166	
σ _E (full current)	dE/E	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.94E-04	7.34E-04	
CM σ _E	dE/E	5.008	E-04	5.00	E-04	5.00	E-04	5.26E	-04	Described
Total lifetime	min	4.23	4.48	3.05	3.00	7.08	7.73	11.41	6.79	Presented at
Total RF Power	MW	(17.0	D8 🔹 🔪	12	.72	30.	48	3.1	1	SuperB WS in Mar., 2010

Collision scheme with large crossing angle & crab waist

All particles from both beams collide in the minimum β_v region, with a net luminosity gain

Crab waist gives Higher luminosity & suppression of X-Y betatron and synchro-betatron resonances. A clear suppression of " v_x - v_y = integer" line is seen in this simulation with a certain set of parameters for SuperKEKB.

K.Ohmi at SuperB Workshop, March.2010

DAPNE Test Results Conclusions

- Large Piwinski Angle & Crab Waist work well
- Crab waist sextupoles are of great importance for the collider luminosity increase
- DAΦNE scientific program has been approved for the next 3 years with the KLOE detector.

Polarized LER (e-) requirement from physics

Polarized electrons in the LER.Spin rotators are easier to accommodate.Spin depolarization time in the LER is longer.

e- gun

- SLAC has a long and rich experience with polarized e- guns.
 - SLC, etc.

Spin rotator

 Polarized beam in the ring is vertical but needs to be longitudinal at the IP.

Mini-MAC PARAMETER REQUIREMENTS FROM PHYSICS

Parameter	Requirement	Comment
Luminosity (top-up mode)	10 ³⁶ cm ⁻² s ⁻¹ @ <i>Y</i> (4 <i>S</i>)	
Integrated Iuminosity	75 ab ⁻¹	Based on a "New Snowmass Year" of 1.5 x 10 ⁷ seconds (PEP-II experience-based)
CM energy range	From just below charm $\approx \tau$ threshold to $Y(5S)$	For a better study of CP violation in Charm and for ${\rm B}_{\rm S}$ measurements.
Minimum boost	βγ= 0.28 (4x7 GeV)	1 cm beampipe radius. First measurement at 1.5 cm
e ⁻ Polarization	60-85%	Enables τCP and T violation studies, measurement of τg -2 and improves sensitivity to lepton flavor-violating decays. Detailed simulation, needed to ascertain a more precise requirement, are in progress.

Marcello A. Giorgi

SuperB Perugia Meeting

The interaction region design has to accommodate the machine needs as well as the detector requirements
Final focus elements as close to the IP as possible
As small a detector beam pipe as backgrounds allow
As thin as possible detector beam pipe
Adequate beam-stay-clear for the machine
Low emittance beams helps here
Synchrotron radiation backgrounds under control
Adequate solid angle acceptance for the detector
Twin bore IR quadrupoles

Crossing angle \pm 33 mrad QD0 & QF1 Superconducting magnets Cryostat has a warm bore Permanent magnet in front of QD0

Next Generation B-factories IPAC10

M. Sullivan et al.

5

It was 8 mm

-7

44

E. Paoloni (Pisa), S. Bettoni (CERN) SuperB WS Dec.2009 Next Generation Bractories IRAC40

The iron yokes mean the maximum B field in the magnet iron can not exceed 2T

The initial suggested design used cold beam pipes (80K) which we can not do because of SR fans from the last soft bend but we can try to increase the space for these magnets so a warm bore works

The magnetic field gradients have to be the same value for the LER and HER and the aperture is square

There are several advantages to being able to use this design and work has started on developing an IR design using these magnets

Next Generation B-factories IPACM. Sullivan SuperB WS Dec.2009

SuperB Status (March 2010)

- Accelerator design is converging with all aspects starting to look feasible.
- Lattice and parameter optimization is continuing for better performance and with added flexibility.
- More subtle beam dynamics issues are being studied (e.g. IBS, FII, emittance diffusion, beam-beam effects, feedbacks).
- Component and lattice tolerances with corrections are being studied.
- Polarization is progressing: beam-beam depolarization, trying to simplify the polarized gun, spin measurements.

Next Generation B-factories IPAC10

J. Seeman Summary at SuperB Workshop, March 2010

Luminosity projection

Introduction to SuperKEKB

SuperKEKB Project

- The KEKB B-Factory will be upgraded to SuperKEKB using the same tunnel as KEKB. The upgrade is based on the "Nano-Beam" scheme, which was first proposed for the Super B factory in Italy.
- Squeeze β_y^* to be as small as possible: 0.27/0.41 mm (LER/HER).
- Assume beam-beam parameter = 0.09, which has already been achieved at KEKB.
- Change beam energies 3.5 / 8 (KEKB)⇒ 4 /7 GeV to achieve longer Touschek lifetime and mitigate the effect of intra-beam scattering in LER. Also it helps lowering the emittance in the HER.
- Try to reuse the KEKB components as much as possible.

Next Generation B-factories IPAC10

From BELLE-II TDR

SuperKEKB parameters compared with SuperB

		SuperB (B	aseline)	SuperKEKB		
Parameter	units	HER (e+)	LER (e-)	HER (e-)	LER (e+)	
Circumference	m	1258.4		3016.3		
Energy	GeV	6.7	4.18	7	4	
X angle (full)	mrad	66		83		
β_x at IP	cm	2.6	3.2	2.4	3.2	
β_y at IP	cm	0.0252	0.0206	0.041	0.027	
ε _x	nm	2.0	2.41	2.4	3.1	
Emittance ratio	%	0.25	0.25	0.35	0.40	
σ_{z} (full)	mm	5	5	5	6	
T	mA	1892	2410	2620	3600	
σ_x at IP	μm	7.211	8.782	7.75	10.2	
σ_y at IP	μm	0.035	0.035	0.059	0.059	
ξ _x		0.0021	0.0033	0.0028	0.0028	
ξ _y		0.0978	0.0978	0.0875	0.09	
Luminosity	cm ⁻² s ⁻¹	1x10)36	0.8x10 ³⁶		

Major items to upgrade

•New Ante-chamber beam pipes for both rings:

•3 km x 2 in total.

•AI/Cu for LER/HER.

Mitigation techniques for suppression of electron cloud.
New IR optics.

•New superconducting/permanent magnets around IP.

•Optimization of the compensation solenoid.

•Additional normal magnets to reduce emittance.

•Replace dipoles & change the wiggler layout for LER.

New HER arc lattice

•More precise magnet setting ⇔ power supplies.

 Rearrangement of existing ARES cavities with additional power sources.

Positron damping ring and new positron target.

•New RF gun for electrons with reduced emittance.

CERN-KEK Committee K.Oide Mar.,2010

Achieving low emittance with minimum change

Replacing ~100 dipole magnets in the arc sections from 0.89 m to 4 m dipoles.

Next Generation B-factories IPAC10

From BELLE-II TDR

Achieving low emittance with minimum change

Achieving low emittance with minimum change

HER Arc Cell Changes

The number of cells for 1/4 arc section is increased from 6.5 to 8.5 to make the horizontal dispersion smaller in order to reduce the emittance, replacing the main dipole magnets of 5.9 m with ones 3.8 m long.

Next Generation B-factories IPAC10

From BELLE-II TDR

Crab waist scheme for SuperKEKB

IR design with superconducting & permanent magnets

Superconducting magnets

 Leakage fields of superconducting magnets are canceled by correction windings on the other beam pipe

Warm bore

Permanent magnets

- Cryostats can be made smaller
- Assembly of vacuum chamber can be simpler
- Vacuum pumps can be located nearer IP
- R&D work needed for developing permanent magnets
- Temperature dependence
- Tunability (an additional magnet is needed when changing the energy)

Design of IR SC magnets (QC1P)

Damping ring

•The injected beam should have very low emittance because of poor dynamic aperture of the main rings

• We have decided to construct a damping ring for positron beam and a low emittance RF-gun for electrons.

Positron Damping Ring

e+ DR

Super KFKR

uest for BSM

Energy	1.	GeV	
Number of bunch trains	2		
Number of bunches / train	2		
Circumference	135.5	m	
Maximum stored current	70	mA	
Energy loss per turn	0.0	91	MV
Horizontal damping time	10.	.87	ms
Injected-beam emittance	17	00	nm
Equilibrium emittance (h/v)	41.4 /	2.07	nm
Coupling	5	5	%
Emittance at extraction (h/v)	42.5 / 3.15		nm
Cavity voltage	0.5	1.0	MV
Bucket height	0.81	1.24	%
Energy spread	5.5×10^{-4}		
Synchrotron tune	0.0152	0.0216	
Equilibrium bunch-length	11.01	7.74	mm
Threshold due to CSR	9.51	8.46	nC / bunch
Phase advance/cell (h/v)	64.39/	deg	
Momentum compaction factor	0.0	141	
Bend-angle ratio	0.3		
Number of normal-cells	4	0	
RF frequency	50	MHz	
Chamber diameter(normal cell)	3	mm	

Electron cloud will be mitigated by TiN coating and solenoid windings. Founded for some components such as magnets.

Vacuum challenges

Application to a beam pipe with antechamber

- Final check of heating of electrode and feed through [2009]
 Beam pipe with antechamber will be used for the wiggler section of SuperKEKB.
- The beam pipe was installed at a magnetic field-free region.
 - But the length was adjusted to fit the real wiggler magnet.
 - Length = 950 mm, width = 32 mm.

Y. Suetsugu IPAC10 WEOAMH01

Bunch-by-bunch Feedback system

A new digital bunch-by-bunch feedback system (iGp) has been developed as a result of collaboration between SLAC, KEK and INFN, and successfully tested at KEKB, KEK ATF, KEK PF, SLAC, DAFNE and CesrTA.

SuperKEKB Status

- A decision to change the strategy from the high current scheme to the nano-beam scheme was made.
- Design work is making steady progress in that direction.

•IR

- Intensive feasibility study with simulations.
- •Efforts not to touch the arc sections of the rings.
 - •We may have recently found a solution that permits us to keep the HER arc lattice as it is.
- •Reuse of the KEKB hardware as much as possible.
- •We have not found a solution for the SuperKEKB lattice that provides sufficient dynamic aperture with a crab waist.
- The R&D work originally for the high current scheme (Vacuum, RF, etc.) is still valid and indispensable with the new scheme as the current will be still a factor of 2 larger than KEKB. A good amount of work has been done.

Luminosity upgrade projection

Next Generation B-factories IPAC10

Y. Ohnishi

Summary

- Physics requires next generation of B factories to achieve 40-50 times the present peak luminosity.
- SuperB and SuperKEKB are in advanced stages of design to meet these goals.
- Design have converged somewhat from different starting points, but still retain individual differences.
- The two machine groups are trading notes in an open manner.

To the success of both projects!

Crab Waist Advantages

1. Large Piwinski angle

 $F = tan(\theta)\sigma_z/\sigma_x$

2. Vertical beta comparable with overlap area

$$\beta_y \approx \sigma_x/\theta$$

3. Crabbed waist transformation

 $y = xy'/(2\theta)$

- a) Luminosity gain with N
- b) Very low horizontal tune shift
- a) Geometric luminosity gain
- b) Lower vertical tune shift
- c) Vertical tune shift decreases with oscillation amplitude
- d) Suppression of vertical synchro-betatron resonances
- a) Geometric luminosity gain
- b) Suppression of X-Y betatron and synchro-betatron resonances