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Abstract 
 Model based control plays an important role for a 

modern accelerator during beam commissioning, beam 
study, and even daily operation. With a realistic model, 
beam behaviour can be predicted and therefore effectively 
controlled. The approach used by most current high level 
application environments is to use a built-in simulation 
engine and feed a realistic model into that simulation 
engine. Instead of this traditional monolithic structure, a 
new approach using a client-server architecture is under 
development. An on-line simulator server is accessed via 
network accessible structured data. With this approach, a 
user can easily access multiple simulation codes. This 
paper describes the design, implementation, and current 
status of PVData, which defines the structured data, and 
PVAccess, which provides network access to the 
structured data. 

INTRODUCTION 
For a modern accelerator, model based control (MBC) 

plays an important role during beam commissioning, beam 
study, and daily operation. The MBC provides an efficient 
approach for establishing a bridge between a real 
accelerator and a theoretical machine. Model codes are the 
engine for beam computation. A Model Engine provides 
the support infrastructure. It prepares model input 
parameters, sets up a model run and packages the run 
results. By feeding it a realistic model, a Model Engine 
can predict beam behaviour. With the predicted behaviour, 
an analysis can then be performed, and a control algorithm 
can be applied to effectively control the beam behaviour. 
With an on-line model, the beam can be controlled 
dynamically, and misbehaved beam can be corrected in 
real-time.  

The approach used by most current high level 
application environments is to use a built-in simulation 
engine and feed a realistic model into that simulation 
engine. The data transfer between application and 
simulation engine is through either an in-memory data 
structure or an internal file as shown in Fig. 1. With this 
architecture, an application is tightly coupled with its 
simulation code making it difficult to call other simulation 
codes which are not supported by the applications High-
level Application (HLA) environment. However, there are 
many accelerator modelling simulation codes;each one has 
strengths but none solves all problems. Thus it is not 
sufficient to use only one simulation code.  

 
Figure 1: Architecture of traditional HLA environment. 

A solution to this problem is to provide a platform to 
host multiple modelling tools so that one can easily switch 
among the codes.  In order to achieve such a platform, a 
set of common physics data structures is required. 
Additionally, the software infrastructure for the model 
platform should be extremely robust. This paper describes 
the design and implementation, and the latest status. 

MODEL SERVICE DESIGN 

System Architecture 
The client-server architecture [1, 2] is shown in Fig. 2.  
 

 
Figure 2: Client-server based architecture. 

The environment is a 3-tier architecture:  
 Data source layer. It accesses live data from 

hardware control system (EPICS system for 
example), or provides data which is stored in 
relational database; 

 Service layer. It provides an extensible set of 
services mostly for easy data communication; 

 Presentation layer. It provides a user graphic 
interface.  

Model Service Architecture 
As shown in Fig. 2, instead of coupling with the 

application, the on-line simulation code is hosted by a 
model service, which runs as a standalone server. Data 
transfer is via the network using a pre-defined data 
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structure as shown in Fig. 3. A client application can 
switch from one simulation code to another seamlessly 
and transparently. Detailed design can be found in [8].  

 

 
Figure 3: Model service architecture. 

DATA STRUCTURE 
The server is prototyped using structured data defined 

by PVData (Process Variable Data) [3] which was initially 
part of an Eclipse project named JavaIOC [4]. It is now a 
separate open-source project named epics-pvdata [3] 
which is hosted by SourceForge. Epics-pvdata consists of 
many modules. The model server uses modules PVData, 
PVAccess, and JavaIOC. 

PVData defines and implements an efficient way to 
store, access, and transmit memory resident structured 
data. The basic data types defined by PVData are:  

 Scalar. A scalar can be one of the followings: 
boolean, byte, short, integer, long, float, double, 
and string;  

 Structure. A structure is an ordered set of fields 
where each field has a name and a corresponding 
type. 

 Array. An array is a one-dimensional array with 
the element type being either a scalar or a 
structure;  

Since a field can have type structure, complex structures 
are supported. No other types are needed since structures 
can be defined for any particular simulation data types. 

PVData is memory resident data stored in a PVDatabase 
(Process Variable Database). A PVDatabase has the 
following features: 

 A database has records (PVRecords). Each 
PVRecord has a unique record name, and holds a 
top level PVStructure.  

 A PVStructure is a structured set of PVFields. 
 A PVField contains data, and the data type can be 

one of the above 3 types. Each PVField has 
support code for accessing individual piece of 
data and for introspection. 

Fig. 4 shows an example of creating records via the 
XML format defined by PVData. Two PVRecords are 
shown in Fig. 4, “simulationResult” and 
“SH1:INDX:0004”. The model data in Fig. 3 is contained 
in the “simulationResult” record in an array format. Each 
PVField can be accessed by connecting the record name 

and a field with a “.”. For example, to get a tune value, 
user can fetch it as “simulationResult.tune”. 

 

 
Figure 4: Design a PVDatabase using PVData. 

The supporting code for “simulationResult” extends to 
“org.epics.pvService.modelService.modelServerBase” 
structure, which is defined in Fig. 5. The user processing 
code is attached for defining this structure.  

 

  
Figure 5: Structure supporting code. 

COMMUNICATION PROTOCOL 
A new generation of EPICS Channel Access protocol, 

PVAccess [5], is used to deliver data over the network. 
PVAccess fully supports PVData, and depends only on 
project PVData.  

<database> 
<package name = "org.epics.pvService.modelService" /> 
<structure structureName = "modelServerBaseFactory"> 
  <scalar name = "supportFactory" scalarType = "string"> 
      org.epics.pvService.modelService.impl.ModelServerFactory 
  </scalar> 
</structure> 
<structure structureName = "modelServerBase"> 
  <auxInfo name = "supportFactory" scalarType = "string"> 
      org.epics.pvService.modelService.modelServerBaseFactory 
  </auxInfo> 
</structure> 
<structure structureName = "elementFactory"> 
  <scalar name = "supportFactory" scalarType = "string"> 
      org.epics.pvService.modelService.impl.ElementFactory 
  </scalar> 
</structure> 
<structure structureName = "element"> 
  <auxInfo name = "supportFactory" scalarType = "string"> 
      org.epics.pvService.modelService.elementFactory 
  </auxInfo> 
</structure> 
</database> 

<database> 
  <import name="org.epics.ioc.*"/> 
  <import name="org.epics.pvData.*"/> 
  <record recordName="simulationResult" 
                extends="org.epics.pvService.modelService.modelServerBase"> 
    <structure extends="alarm" name="alarm"/> 
    <structure extends="timeStamp" name="timsStamp"/> 
    <scalar name="model" scalarType="string" immutable="false">elegant</scalar> 
    <array name="elemName" scalarType="string" immutable="false"/> 
    <array name="s" scalarType="double" immutable="false"/> 
    <array name="alphax" scalarType="double" immutable="false"/> 
    <array name="betax" scalarType="double" immutable="false"/> 
    <array name="nux" scalarType="double" immutable="false"/> 
    <array name="etax" scalarType="double" immutable="false"/> 
    <array name="etapx" scalarType="double" immutable="false"/> 
    <array name="alphay" scalarType="double" immutable="false"/> 
    <array name="betay" scalarType="double" immutable="false"/> 
    <array name="nuy" scalarType="double" immutable="false"/> 
    <array name="etay" scalarType="double" immutable="false"/> 
    <array name="etapy" scalarType="double" immutable="false"/> 
    <array name="orbitx" scalarType="double" immutable="false"/> 
    <array name="orbitpx" scalarType="double" immutable="false"/> 
    <array name="orbity" scalarType="double" immutable="false"/> 
    <array name="orbitpy" scalarType="double" immutable="false"/> 
    <array name="tune" scalarType="double" immutable="false"/>  
   </record> 
   <record recordName="SH1:INDX:0004"  
                 extends="org.epics.pvService.modelService.element"> 
    <structure extends="alarm" name="alarm"/> 
    <structure extends="timeStamp" name="timsStamp"/> 
    <structure name="attribute"> 
      <scalar name="index" scalarType="int" immutable="true">4</scalar> 
      <scalar name="type" scalarType="string" immutable="true">MULT</scalar> 
      <scalar name="order" scalarType="int" immutable="true">3</scalar> 
      <scalar name="b3" scalarType="double" immutable="false">9.9954</scalar> 
    </structure> 
  </record> 
  ...... 
</database> 
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Two mechanisms are provided for accessing PVData: 
(1) “local”, which provides access to the local PVDatabase 
without using the network, and (2) “pvAccess”, which 
implements network access between the client and server.  

Some major functions are described as below: 
 An application can implement a server which 

provides full support for PVData by starting a 
local PVDatabase. 

 Monitoring is defined by project PVData, which 
supports an extensible set of monitoring 
algorithms. Server developers can design their 
own monitor algorithms, or use the default set. 
PVAccess provides the data access method.  

 A query facility is supported. A client can ask a 
network query to be made. 

 A gateway between PVAccess and other systems. 
For example the JavaIOC implements caV3, 
which provides a gateway between EPICS 
Channel Access and PVAccess.   

Fig. 6 shows an example data flow using PVAccess to 
get data from a PVRecord. 

 
Figure 6: PVAccess Data Flow. 

RESULT 
Currently, the model servers are implemented to support 

the Tracy-3 [6] and Elegant [7] simulation codes as shown 
in Fig. 7. 

 

  
Figure 7: Implementation for model service. 

A user can switch between those 2 models using setting 
“simulationResult.model” as shown in Fig.4, which uses 
Tracy-3 if the attribute for the name model is set to “tracy” 
or Elegant if it is set to “elegant”. Fig. 8 shows a 
horizontal betatron function plot from the model server on 
a presentation client.  

 

  
Figure 8: Beta function plotting. 

DISCUSSION AND SUMMARY 
An on-line model server is designed and implemented 

using PVData as the data container and PVAccess as the 
communication protocol. Work remains before the model 
server is ready for use. Remaining tasks include: 
concurrent multi-user access support, system robustness, 
and performance benchmark. Nevertheless, the current 
prototype provides a way to host multi-simulation codes, 
and access them transparently. Currently, Tracy-3 and 
Elegant codes are supported and demonstrated.  
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