
DESIGN OF ACCELERATOR ONLINE SIMULATOR SERVER USING
STRUCTURED DATA*

G. Shen #, BNL, Upton, NY 11973, U.S.A.
M. Kraimer, ANL, Argonne, IL 60439, U.S.A.

P. Chu, J. Wu, SLAC, Menlo Park, CA 94025, U.S.A.

Abstract
 Model based control plays an important role for a

modern accelerator during beam commissioning, beam
study, and even daily operation. With a realistic model,
beam behaviour can be predicted and therefore effectively
controlled. The approach used by most current high level
application environments is to use a built-in simulation
engine and feed a realistic model into that simulation
engine. Instead of this traditional monolithic structure, a
new approach using a client-server architecture is under
development. An on-line simulator server is accessed via
network accessible structured data. With this approach, a
user can easily access multiple simulation codes. This
paper describes the design, implementation, and current
status of PVData, which defines the structured data, and
PVAccess, which provides network access to the
structured data.

INTRODUCTION
For a modern accelerator, model based control (MBC)

plays an important role during beam commissioning, beam
study, and daily operation. The MBC provides an efficient
approach for establishing a bridge between a real
accelerator and a theoretical machine. Model codes are the
engine for beam computation. A Model Engine provides
the support infrastructure. It prepares model input
parameters, sets up a model run and packages the run
results. By feeding it a realistic model, a Model Engine
can predict beam behaviour. With the predicted behaviour,
an analysis can then be performed, and a control algorithm
can be applied to effectively control the beam behaviour.
With an on-line model, the beam can be controlled
dynamically, and misbehaved beam can be corrected in
real-time.

The approach used by most current high level
application environments is to use a built-in simulation
engine and feed a realistic model into that simulation
engine. The data transfer between application and
simulation engine is through either an in-memory data
structure or an internal file as shown in Fig. 1. With this
architecture, an application is tightly coupled with its
simulation code making it difficult to call other simulation
codes which are not supported by the applications High-
level Application (HLA) environment. However, there are
many accelerator modelling simulation codes;each one has
strengths but none solves all problems. Thus it is not
sufficient to use only one simulation code.

Figure 1: Architecture of traditional HLA environment.

A solution to this problem is to provide a platform to
host multiple modelling tools so that one can easily switch
among the codes. In order to achieve such a platform, a
set of common physics data structures is required.
Additionally, the software infrastructure for the model
platform should be extremely robust. This paper describes
the design and implementation, and the latest status.

MODEL SERVICE DESIGN

System Architecture
The client-server architecture [1, 2] is shown in Fig. 2.

Figure 2: Client-server based architecture.

The environment is a 3-tier architecture:
 Data source layer. It accesses live data from

hardware control system (EPICS system for
example), or provides data which is stored in
relational database;

 Service layer. It provides an extensible set of
services mostly for easy data communication;

 Presentation layer. It provides a user graphic
interface.

Model Service Architecture
As shown in Fig. 2, instead of coupling with the

application, the on-line simulation code is hosted by a
model service, which runs as a standalone server. Data
transfer is via the network using a pre-defined data

*Work performed under auspices of the U.S. Department of Energy
under Contract No. DE-AC02-98CH10886 with Brookhaven Science
Associates, LLC.
#shengb@bnl.gov

Proceedings of IPAC’10, Kyoto, Japan WEPEB024

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems 2737

structure as shown in Fig. 3. A client application can
switch from one simulation code to another seamlessly
and transparently. Detailed design can be found in [8].

Figure 3: Model service architecture.

DATA STRUCTURE
The server is prototyped using structured data defined

by PVData (Process Variable Data) [3] which was initially
part of an Eclipse project named JavaIOC [4]. It is now a
separate open-source project named epics-pvdata [3]
which is hosted by SourceForge. Epics-pvdata consists of
many modules. The model server uses modules PVData,
PVAccess, and JavaIOC.

PVData defines and implements an efficient way to
store, access, and transmit memory resident structured
data. The basic data types defined by PVData are:

 Scalar. A scalar can be one of the followings:
boolean, byte, short, integer, long, float, double,
and string;

 Structure. A structure is an ordered set of fields
where each field has a name and a corresponding
type.

 Array. An array is a one-dimensional array with
the element type being either a scalar or a
structure;

Since a field can have type structure, complex structures
are supported. No other types are needed since structures
can be defined for any particular simulation data types.

PVData is memory resident data stored in a PVDatabase
(Process Variable Database). A PVDatabase has the
following features:

 A database has records (PVRecords). Each
PVRecord has a unique record name, and holds a
top level PVStructure.

 A PVStructure is a structured set of PVFields.
 A PVField contains data, and the data type can be

one of the above 3 types. Each PVField has
support code for accessing individual piece of
data and for introspection.

Fig. 4 shows an example of creating records via the
XML format defined by PVData. Two PVRecords are
shown in Fig. 4, “simulationResult” and
“SH1:INDX:0004”. The model data in Fig. 3 is contained
in the “simulationResult” record in an array format. Each
PVField can be accessed by connecting the record name

and a field with a “.”. For example, to get a tune value,
user can fetch it as “simulationResult.tune”.

Figure 4: Design a PVDatabase using PVData.

The supporting code for “simulationResult” extends to
“org.epics.pvService.modelService.modelServerBase”
structure, which is defined in Fig. 5. The user processing
code is attached for defining this structure.

Figure 5: Structure supporting code.

COMMUNICATION PROTOCOL
A new generation of EPICS Channel Access protocol,

PVAccess [5], is used to deliver data over the network.
PVAccess fully supports PVData, and depends only on
project PVData.

<database>
<package name = "org.epics.pvService.modelService" />
<structure structureName = "modelServerBaseFactory">
 <scalar name = "supportFactory" scalarType = "string">
 org.epics.pvService.modelService.impl.ModelServerFactory
 </scalar>
</structure>
<structure structureName = "modelServerBase">
 <auxInfo name = "supportFactory" scalarType = "string">
 org.epics.pvService.modelService.modelServerBaseFactory
 </auxInfo>
</structure>
<structure structureName = "elementFactory">
 <scalar name = "supportFactory" scalarType = "string">
 org.epics.pvService.modelService.impl.ElementFactory
 </scalar>
</structure>
<structure structureName = "element">
 <auxInfo name = "supportFactory" scalarType = "string">
 org.epics.pvService.modelService.elementFactory
 </auxInfo>
</structure>
</database>

<database>
 <import name="org.epics.ioc.*"/>
 <import name="org.epics.pvData.*"/>
 <record recordName="simulationResult"
 extends="org.epics.pvService.modelService.modelServerBase">
 <structure extends="alarm" name="alarm"/>
 <structure extends="timeStamp" name="timsStamp"/>
 <scalar name="model" scalarType="string" immutable="false">elegant</scalar>
 <array name="elemName" scalarType="string" immutable="false"/>
 <array name="s" scalarType="double" immutable="false"/>
 <array name="alphax" scalarType="double" immutable="false"/>
 <array name="betax" scalarType="double" immutable="false"/>
 <array name="nux" scalarType="double" immutable="false"/>
 <array name="etax" scalarType="double" immutable="false"/>
 <array name="etapx" scalarType="double" immutable="false"/>
 <array name="alphay" scalarType="double" immutable="false"/>
 <array name="betay" scalarType="double" immutable="false"/>
 <array name="nuy" scalarType="double" immutable="false"/>
 <array name="etay" scalarType="double" immutable="false"/>
 <array name="etapy" scalarType="double" immutable="false"/>
 <array name="orbitx" scalarType="double" immutable="false"/>
 <array name="orbitpx" scalarType="double" immutable="false"/>
 <array name="orbity" scalarType="double" immutable="false"/>
 <array name="orbitpy" scalarType="double" immutable="false"/>
 <array name="tune" scalarType="double" immutable="false"/>
 </record>
 <record recordName="SH1:INDX:0004"
 extends="org.epics.pvService.modelService.element">
 <structure extends="alarm" name="alarm"/>
 <structure extends="timeStamp" name="timsStamp"/>
 <structure name="attribute">
 <scalar name="index" scalarType="int" immutable="true">4</scalar>
 <scalar name="type" scalarType="string" immutable="true">MULT</scalar>
 <scalar name="order" scalarType="int" immutable="true">3</scalar>
 <scalar name="b3" scalarType="double" immutable="false">9.9954</scalar>
 </structure>
 </record>

</database>

WEPEB024 Proceedings of IPAC’10, Kyoto, Japan

2738

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

Two mechanisms are provided for accessing PVData:
(1) “local”, which provides access to the local PVDatabase
without using the network, and (2) “pvAccess”, which
implements network access between the client and server.

Some major functions are described as below:
 An application can implement a server which

provides full support for PVData by starting a
local PVDatabase.

 Monitoring is defined by project PVData, which
supports an extensible set of monitoring
algorithms. Server developers can design their
own monitor algorithms, or use the default set.
PVAccess provides the data access method.

 A query facility is supported. A client can ask a
network query to be made.

 A gateway between PVAccess and other systems.
For example the JavaIOC implements caV3,
which provides a gateway between EPICS
Channel Access and PVAccess.

Fig. 6 shows an example data flow using PVAccess to
get data from a PVRecord.

Figure 6: PVAccess Data Flow.

RESULT
Currently, the model servers are implemented to support

the Tracy-3 [6] and Elegant [7] simulation codes as shown
in Fig. 7.

Figure 7: Implementation for model service.

A user can switch between those 2 models using setting
“simulationResult.model” as shown in Fig.4, which uses
Tracy-3 if the attribute for the name model is set to “tracy”
or Elegant if it is set to “elegant”. Fig. 8 shows a
horizontal betatron function plot from the model server on
a presentation client.

Figure 8: Beta function plotting.

DISCUSSION AND SUMMARY
An on-line model server is designed and implemented

using PVData as the data container and PVAccess as the
communication protocol. Work remains before the model
server is ready for use. Remaining tasks include:
concurrent multi-user access support, system robustness,
and performance benchmark. Nevertheless, the current
prototype provides a way to host multi-simulation codes,
and access them transparently. Currently, Tracy-3 and
Elegant codes are supported and demonstrated.

ACKNOWLEDGEMENT
The authors would like to thank Johan Bengtsson,

Weiming Guo, and Donald Dohan at BNL and Ji Qiang at
LBNL for their helpful discussions and comments on the
model server development. They also want to thank all
developers at COSYLAB, especially Matej Sekoranja, for
their contributions on the epics-pvdata project. They want
to express their thanks to Leo (Bob) Dalesio for his
continuous support and encouragement.

REFERENCES
[1] G. Shen, "A Modular Environment for High Level

Applications", Proc. of ICALEPCS 2009, Kobe,
Japan, 2009, THP094

[2] G. Shen, "A Software Architecture for High Level
Applications", Proc. of PAC09, Vancouver, Canada,
2009, FR5REP004

[3] http://epics-pvdata.sourceforge.net/
[4] M. R. Kraimer, M. Sekoranja, “JavaIOC Status”, talk

on EPICS Meeting, Oct. 2009, Kobe Japan
[5] M. R. Kraimer, L. R. Dalesio, K. Zagar, M.

Sekoranja, “Evolution of the EPICS Channel Access
Protocol”, in the Proc. of ICALEPCS 2009, Oct.
2009, Kobe, Japan, MOD005

[6] J. Bengtsson, “TRACY-2 User’s Manual”, SLS
Internal Document, February 1997; M. B¨oge,
“Update on TRACY-2 Documentation”, SLS Internal
Note, SLS-TME-TA-1999-0002, June 1999.

[7] M. Borland, “elegant: A Flexible SDDS-Compliant
Code for Accelerator Simulation,” APS LS-287,
2000.

[8] “Generic Model Host System Design”, P. Chu, J. Wu,
G. Shen, J. Qiang, these proceedings, TUPEC071

Proceedings of IPAC’10, Kyoto, Japan WEPEB024

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems 2739

