
NETWORKED CONTROL SYSTEM OVER AN EPICS BASED
ENVIRONMENT

M. Eguiraun1∗, J. Jugo1,2† , I. Badillo2‡ , I. Arredondo1,2§
1ESS Bilbao, Spain, 2 Univ. of Basque Country, Spain

Abstract

The use of distributed control systems can improve the
overall control system’s performance in aspects as the in-
crement of computational power, robustness and load bal-
ance. Thus, the importance of developing control systems
across a networked environment is rising, leading to the ap-
pearance of new schemes.

Moreover, the interest on TCP based networks in indus-
trial environments has been increasing due to its advantages
in cost and easy integration. However, this protocol has
non-deterministic characteristics, which make difficult its
use for networked control systems. The use of EPICS can
be an approach for minimizing this behaviour, due to its
soft real time capabilities. In fact, a lot of research effort is
focused on developing middleware based solutions.

This work presents a networked control scheme where
control loop is closed under periodic sampling over the net,
managed by an EPICS control system. As opposed to usual
way of working with EPICS, where an IOC implements
desired control algorithm, two different strategies are com-
pared. In the first one, two IOCs are used; one performs
data acquisition, while the second one calculates the con-
trol signal. In the second strategy, a CA client connected to
a IOC for data acquisition closes the loop, being the control
signal calculation performed in the client.

Similar timing results are achieved with both experi-
ments, but, the CA client based one, enables more accuracy
in the scan period and more versatility in the design of the
controllers. These characteristics make the second option a
good alternative in control field.

INTRODUCTION

In large scientific facilities, the distributed nature of the
diverse elements involved leads to monitoring and control
solutions which must be distributed too. From the control
point of view, allocating control tasks among several ma-
chines can carry out jobs which cannot be achieved with
a single control device. But, on the contrary, this fact in-
creases complexity and programming time, due to the ne-
cessity of communicating different elements and introduc-
ing new paradigms especially related to stability issues.

However, the use of distributed control systems can im-
prove the overall system’s performance in aspects such as

∗meguiraun@essbilbao.com
† josu.jugo@ehu.es
‡ inari.badillo@ehu.es
§ iarredondo@essbilbao.com

the increase of computational power, robustness and load
balance. Thus, the importance of developing control sys-
tems across a networked environment (NCS) is rising and
an important research effort must be focused to solve prob-
lems related to NCS, as for example the effect of commu-
nication delay and losses over closed-loop stability using
different control schemes, [1].

On the other hand, in complex and distributed environ-
ments, where important amount of data must be processed
and different control devices must be integrated, the use
of a middleware based approach is very advisable. For
instance, large industrial and scientific facilities use mid-
dleware based control mechanisms, [2, 3]. In particu-
lar, the Experimental Physics and Industrial Control Sys-
tem (EPICS) set of software tools and applications is very
extended around the world, being its communication ap-
proach based on standard ethernet TCP/IP connections.

In this paper, a networked closed loop control scheme
based on EPICS is analyzed. The main goal is to study the
advantages and drawbacks of using standard EPICS solu-
tions for such purpose, comparing two different schemes.
In the first scheme, two Input Output Controllers (IOCs) are
used, one performing the data acquisition, while the second
one calculates the control signal. In the second strategy, a
Channel Access (CA) client connected to a IOC for data
acquisition closes the loop, being the control signal calcu-
lation performed on the client.

The present work is structured as follows: firstly the
laboratory testbed, where it is implemented the networked
control, is presented. After that, results for each EPICS
based NCS control scheme are summarized in Section . Fi-
nally, some conclusions and future work are explained.

EXPERIMENTAL SETUP

Two different approaches have been implemented in
present work. Both are plotted in Figure 1. The first
scheme is a pure EPICS based solution, where the NCS is
implemented by mean of two IOC servers, located in host1
and host 3. One IOC server acts as sensor (epics:daqai) and
actuator (epics:daqao) device, performing data acquisition
and applying control signal. It emulates analog input and
analog output records, while loop period is set by a dummy
record (epics:calc). The second IOC (epics:algor) calcu-
lates the control signal, and writes into first IOC’s field,
using usual CA methodology. The communication link is a
standard Ethernet based network, deployed specifically for
these kind of experiments. The control algorithm consists
on a simple counter; since the main goal of this work is

Proceedings of IPAC’10, Kyoto, Japan WEPEB014

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems 2713



LAN

host 1

host 3
host 2

epics:calc epics:daqai

Calculation
(set period)

Analog In Analog Out

Calculation
(control algorithm)

Python Client
Control Algorithm

INPA FLNK

VAL

epics:algor

CALC: A+1

SCAN: XX seconds

epics:daqao
FLNKFLNK

VAL

DOL

Figure 1: Experimental setup overview.

to analyze timing constraints, a basic calculation has been
set. The second approach replaces the control algorithm
IOC by a python program which implements a CA client
(see host 2 in Figure 1). In this case, Epics CA for Python
module provides an interface to Epics CA [4].

In this scenario, two different kind of tests has been per-
formed. The first one consists on a set of three records in
host 1, while in the second one the number of record is
multiplied by a factor of 400.

In both cases, a single record set is used to perform the
calculation of the simulated control signal. The rest of the
records are placed with the aim of disturbing the network
communication and increasing the system load.

RESULTS

The following section presents the main results obtained
with the aforementioned experiments. These are preliminar
results to indicate the tendency of the measurements, but
longer tests with computer’s effort monitoring have to be
performed, in order to obtain more precise conclusions.

Pure Epics Scheme

Figures 2 and 3 show the case where pure EPICS is
used. Considering that period’s values are not very low,
network environment should deal with them without im-
portant problems (except the typical ones in TCP based non
deterministic networks). However, analyzing the results for
each period, differences can be observed, specially in lower
periods. A wider histogram means a higher jitter, defined
as the difference between obtained period and its desired
value. In conclusion, when lower periods are used, higher
jitters appear. This result can be previewed since the sys-
tem load is increased in such situation.

The main conclusion is that EPICS behaves well enough
in such circumstances, since extra network load does not
add dramatic changes in its timing performance. This
clearly shows that its soft real time capabilities can be used
to close the control loop over the net, although it has a non-
deterministic nature, under several conditions.

Tables 1 and 2 summarize the main timing parameters
for studied sampling times.

Table 1: EPICS single PV, all values in milliseconds.

Period Mean Std. deviation Maximum

100 100,16 0,73 152,90
200 200,14 0,44 207,65
500 500,13 0,84 507,74

1000 1000,1 1,27 1003,00

Table 2: EPICS multiple PVs (in milliseconds).

Period Mean Std. deviation Maximum

100 100,15 0,30 116,97
200 200,21 5,51 281,12
500 500,16 0,23 503,23

1000 1000,17 0,25 1000,44

Figure 2: EPICS against one PV.

Figure 3: EPICS against multiple PVs.

Python CA Client Based Scheme

In this case, the NCS system can be implemented with
more flexibility, admitting a wide range of periods. Unlike
in standard EPICS, which have the minimum scan period
at 100ms, with Python it is possible to work with smaller
time constraints. So, in order to study the limits introduced

WEPEB014 Proceedings of IPAC’10, Kyoto, Japan

2714

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems



by the sampling period, lower periods are set. As expected,
Figures 4 and 5 show higher jitters for lower periods. In ad-
dition, similar behaviour is obtained when disturbing PVs
add an overload on the network.

If both Pure EPICS and Python CA Client experiments
are compared, there is little difference when focusing on
similar periods. This fact proves that a python client is
a good alternative for implementing a networked control
strategy over an EPICS based net.

Tables 3 and 4 give detailed information.

Table 3: Python and single PV (in milliseconds).

Period Mean Std. deviation Maximum

10 9.99 1,38 59,07
25 24,99 2,41 79,66
50 49,99 1,84 105,91

100 99,99 2,16 136,31
150 149,98 4,54 197,10
250 249,98 1,25 274,64
500 499,99 2,10 527,39

1000 999,98 1,09 1015,18

Table 4: Python with disturbing PVs (in milliseconds).

Period Mean Std. deviation Maximum

10 9.99 1.49 69.46
25 25.00 2.74 102.55
50 49,99 1.47 111.81

100 99,99 1.92 151.62
150 149,99 1.53 206.36
200 200.00 2.35 239.17
250 250.00 2.29 307.55
500 500.00 1.61 515.83

1000 1000.00 2.96 1020.00

Figure 4: Python and single PV.

Figure 5: Python with disturbing PVs.

CONCLUSION AND FUTURE WORK

Presented results show that EPICS acts as soft real-
time system, with the limitations derived from a non-
deterministic network connection. Moreover, reasonable
timing characteristics have been observed in both schemes.
Those results corroborate the possibility of developing
NCS systems using EPICS under several conditions, for
a large variety of feedback control systems, e.g. systems
where hard real-time is not really needed.

When Pure EPICS and Python CA Client schemes are
compared, it is observed that the timing results are sim-
ilar, but being more flexible the scheme based in Python
CA client, in period time definition and in suitability for
control algorithms. This approach allows the use of rich-
ness of the python programming language, which enables,
for instance, developing interfaces with hardware devices.
Therefore, this procedure can be used to deploy hardware
drivers within EPICS from python, calling C code directly.
This leads to a faster deployment and previous knowledge
can be reused.

Finally, although the results are relatively satisfactory,
the proposed scheme can be improved in several ways.
First, the IOC servers have been implemented in Linux sys-
tems, being the use of a real time operating system (vx-
works, real-time Linux, ...), a viable enhancement way.

Another possible improvement comes from the use of
fine-tuned timing for the Ethernet network. Here, the Net-
work Time Protocol and the Precision Time Protocol IEEE
1588 are interesting tools.

REFERENCES

[1] Y. Tipsuwan and M. Chow, “Control methodologies in net-
worked control systems”, Control Engineering Practice 11,
2003, 1099-1111.

[2] EPICS home page, http://www.aps.anl.gov/epics/

[3] TANGO home page, http://www.tango-controls.org/

[4] Epics Channel Access for Python,
http://cars9.uchicago.edu/~newville/Epics/Python/

Proceedings of IPAC’10, Kyoto, Japan WEPEB014

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems 2715


