
IFC TO FESA GATEWAY: SMOOTH TRANSITION FROM GSI TO FAIR
CONTROL SYSTEM

G. Jansa, I. Kriznar, G. Pajor, I. Verstovsek Cosylab, Ljubljana, Slovenia
R. Bär, L. Hechler, U. Krause, GSI, Darmstadt, Germany

Abstract
Present GSI control system uses an in-house developed

CORBA based middleware called IFC. For FAIR project
that will be built on the GSI site, a new control system is
foreseen. New devices that are being integrated into the
control system will be developed in CERN's Front End
Software Architecture (FESA). In this article, an IFC to
FESA gateway will be presented. The gateway provides
an intermediate layer that is able to talk to FESA device
servers on one side and provide their functionality to
existing IFC clients. The gateway will allow coexistence
of FESA front-end implementations and existing GSI
device servers and clients, providing a smooth transition
path to the future FAIR front-end environment. New GSI
and FAIR devices that will be implemented in FESA will
have to match GSI standards for nomenclature and device
modelling. Exact match of new devices is not possible
due to different hardware and software architecture of the
new system, therefore a gateway solution is required. The
gateway can translate the complete device model,
including conversion from FESA to IFC data types.

INTRODUCTION
The Facility for Antiproton and Ion Research (FAIR)

will be built on the GSI site. The present GSI UNILAC
and SIS18 accelerator ring will be used as a injector for
new accelerator installation. FAIR facility will be
operated in a multiplexed mode, meaning that multiple
experiments will be supplied with several different ion
types simultaneously in a similar way as in the old GSI
accelerator. The existing control system at GSI is well
adapted for the present needs, but due to technological
requirements a new control system will be used for FAIR.
For front end part of the control system CERN's FESA
was chosen [1].

For the transition period, when new devices are
implemented in FESA but old GSI installation and many
clients in control room will still use IFC, an intermediate
layer of software will be required which will act as a glue
between new FESA device servers and old IFC clients
and device servers as shown on figure 1.

Figure 1: Coexistence of IFC clients and device servers
and FESA device servers.

IFC AND FESA

IFC Description
IFC is an in-house developed CORBA based control

system which has a narrow interface between device
servers running on front-ends and clients running on
remote machines accessing properties on device servers.
By narrow interface we mean, that there is only one
method of a given type (synchronous, asynchronous and
connected read/write/call) which can control all of the
device server's properties by specifying the property name
as an argument of the method. IFC supports synchronous
and asynchronous read, write and call (call is an action
and can be seen as write operation without data) as well
as connected read, write and call which are used for
monitoring the property or for periodic setting of
specified property.

Data written to or read from property is transported
using data container which is a vector of values of
supported data types. The values in container are not
named and therefore the information of the meaning of
specific value is given separately as XML description.

FESA Description
FESA uses CMW (Controls Middleware) which is

CORBA based communication middle layer between
FESA device servers and higher level applications. The
architecture is two-tier client-server and it applies the
device/property model, where equipment is perceived as
an device having properties that can be read, set and
subscribed to. Also CMW provides a narrow interface to
FESA servers in a similar way as IFC. The device's
properties are controlled by synchronous and

WEPEB013 Proceedings of IPAC’10, Kyoto, Japan

2710

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

asynchronous get and set calls and subscription (monitor
on and monitor off methods).

Data is transported in a similar way as in IFC, by using
data container which is a map of primitive values which
can be either scalars or arrays. The values in container can
be accessed by name and therefore the knowledge of the
location of specific value within the container is not
necessary.

IFC and FESA comparison
In the table below mapping of the methods is listed.

Both interfaces differ significantly but due to the
implementation details as explained in next chapter this
didn't present a problem.
Table 1: Overview of Method Mapping between IFC and
CMW

Meaning of method IFC method
name

CMW method
name

synchronous read read (synchronous) get

synchronous write write (synchronous) set

synchronous action call /

asynchronous read requestRead (asynchronous) get

asynchronous write requestWrite (asynchronous) set

asynchronous action requestCall /

cancel asynchronous
process

cancelRequest /

repetitive read connectRead /

repetitive write connectWrite /

repetitive action connectCall /

cancel repetitive
process

disconnect /

monitor on monitorOn

monitor off monitorOff

In the table below mapping of data types supported by
both systems are listed. Also here the difference is
significant since CMW does not support unsigned data
types.

Table 1: Overview of Data Type Mapping between IFC
and CMW

Data type/ C++
type

Supported by
IFC/ C++ type

Supported by
CMW/ C++ type

boolean yes / signed short yes / bool

signed byte yes / signed char yes/ signed char

unsigned byte yes / unsigned char no

signed word yes / signed short yes / signed short

unsigned word yes / unsigned
short

no

signed long yes / signed long yes / signed long

unsigned long yes / unsigned long no

float yes / float yes / float

double yes / double yes / double

string yes / std:string yes / char*

GATEWAY

General
Gateway is used to transform FESA device servers to

present GSI control system IFC devices. This is achieved
by transforming CMW calls and data types to IFC calls
and data types as shown on figure 2.

Gateway is implemented as an IFC device server,
running in the GSI device manager environment, which
implements a corresponding IFC property for each
property of the FESA device. The IFC property simply
calls the FESA property via synchronous CMW access,
mapping the FESA data types to IFC data types. This has
a neat advantage in that the complete IFC interface is
already provided in the IFC device server framework and
no specific coding was necessary to handle asynchronous
and connected requests. Connection between IFC
interface and FESA only uses synchronous access which
greatly simplifies architecture of the gateway.

A default implementation of the IFC properties,
representing the FESA properties in the IFC device
severer, is generated from the formal FESA class design
description. This includes mapping between IFC and
FESA data types.

Figure 2: Gateway architecture

Mapping Logic
Default gateway implementation is sufficient for basic

FESA to IFC properties transformation. This means each
FESA property's data item (primitive value in data
container - map) is transformed into appropriate IFC

Proceedings of IPAC’10, Kyoto, Japan WEPEB013

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems 2711

property's data item (primitive value in data container -
vector). In a similar way each FESA property's filter item
is transformed into appropriate IFC property's parameter
item.

Gateway uses FESA class design XML file to generate
rules for basic mapping logic described above. FESA
class design XML file contains information on all FESA
device server properties and also all data they contain.
The order of data items defined in XML file will be
preserved and used in IFC data container.

For complex transformations gateway provides
extension points where arbitrary transformation between
FESA and IFC properties can be defined. This is very
useful when single IFC property is composed of several
FESA properties or if several IFC properties require only
small part of data provided by certain FESA property.
During start up gateway checks if specific ICF property is
implemented in extension point. If that is true then it's
basic implementation is excluded in the process of
generating properties.

Mapping of names of the properties is defined in
special configuration file. In this file for each FESA
property name corresponding IFC property name is
defined. If certain property or whole file is missing
gateway will only transform property names to upper
case.

 Gateway uses a set of configuration files for additional
configuration. Currently only two are supported; name of
the FESA server to which gateway should connect to and
if gateway should be run in read only mode.

FURTHER DEVELOPMENT
For gateway to be really useful (is primary usage is to

allow old IFC clients to be used with new FESA devices)
a FESA class design guidelines will have to be written.
The guidelines should include standard IFC properties
(e.g. INIT, RESET, VERSION, STATUS, RESET) that
will have to be implemented in each FESA class even if
the functionality will not be available for particular device
(dummy property will be used). This is necessary to avoid
any failures in IFC clients. Guidelines should also contain
agreement on how to include time stamp in the properties
that perform data acquisition and how to implement IFC
action which could be seen as a set without data.

Current implementation of the gateway is using FESA
class design XML file to generate properties. This has a
downside since the maintainer of gateway instances has to

maintain also a set of additional XML files. To avoid this
problem, gateway could use FESA database, from where
all relevant data could be obtained and would thus require
only the knowledge of the FESA class name and its
version.

Before new alarm system is developed for FAIR project
old alarm system could be used to collect alarms from
new devices developed in FESA. To accomplish this
gateway would create a special CMW monitor
connections on relevant properties (e.g. Alarm,
AlarmDetails, Status) as shown on the figure below.

Figure 2: Gateway layout with alarms

Gateway would maintain a list of active alarms
collected from various properties on FESA device server
and would fire alarm notifications via IP multicast as all
other current GSI devices.

REFERENCES
[1] T. Hoffman, “FESA – The Front-End Software Architecture

at FAIR”, PCaPAC08
[2] I. Kriznar et al., “IFC/FESA gateway – project proposal

and design”, unreleased

WEPEB013 Proceedings of IPAC’10, Kyoto, Japan

2712

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

