
A VXI-11 MODULE FOR PYTHON LANGUAGE AND ITS APPLICATION
TO ACCELERATOR CONTROLS

Noboru Yamamoto†

Japan Proton Accelerator Research Complex (J-PARC, KEK & JAEA)
High Energy Accelerator Research Organization Tokai Campus

Shirakata-Shirane 2-4, Tokai, Naka, Ibaraki
Japan 319-1195

ABSTRACT

VXI-11 is an industrial standard to control equipment
through network. A module to control these equipment
through Python scripting Language was developed. This
module can be used for quick testing of equipment and for
the rapid application development. The implementation of
the module will be discussed and some application of the
module will be reported.

WHAT IS VXI11

VXI-11is an international standard for control of equip-
ment over standard TCP/IP network. You may consider
VXI-11 as network based GP-IB. Although GP-IB is stilly
used widely in the field, most modern measurement de-
vices are equipped with Ethernet interface and support
VXI1 standard over Ethernet. Using Ethernet based VXI-
11, we can setup measurement system using a standard PC
and these equipment without additional hardware, such as
GPIB interface boards or boxes..

VXI11 standard[1, 2, 3, 4] defines a network instrument
protocol and its API based on ONC/RPC and its mapping
to VXI-bus/IEEE 488.1[5]/IEEE488.2[5] devices. VXI-11
network instrument protocol is defined based on the well
accepted network standard such as ONC/RPC, XDR and
TCP/IP. The definition of the protocol is given as RPCL
description in the VXI11 standard documentation. An
ONC/RPC tool, rpcgen, can be used to generate C language
source code and header files for the RPC server and clients.

VISA and PyVISA

If you want utilize VXI-11, there are several ways.
For example, you can purchase commercial software
which supports VISA(Virtual Instrument Standard Archi-
tecture), such as LabView[7]L from National Instrument
VISA(Virtual Instrument Standard Architecture) is a stan-
dard defined by the VXIplug & play Systems Alliance in-
cluding Agilent Technologies and National Instruments.
These company provides VISA compatible drivers for their
products. VISA supports VXI11 as one of supported

† noboru.yamamoto@kek.jp

busses. VISA libraries are supplied by multiple compa-
nies and should be compatible in principle. Its license is
usually included in the products and/or application devel-
opment environment.

Python module to access VISA library, PyVISA[10] is
also available as a free software. Combining PyVISA with
other Python modules, you can create a control applica-
tion efficiently. Once you have VISA driver installed on
you PC, PyVISA will work without additional software.
In the environment with equipment from multiple vendors,
the compatibility with the library and driver can be a prob-
lem. VISA driver from one company may or may not work
with the device from other company. You mus alos care-
ful if the VISA driver license allow you to use it in such a
mixed environment.

WHY PYTHON-VXI11?

When we get a new measurement device, we usually
want to run simple tests to check the functionality and
behavior of the device which are not so obvious from
just reading a documentation. Combination of VISA and
PyVISA can be a good choice for this purpose. Drawback
of this approach is that VISA drivers are proprietary prod-
uct of these commercial vendors. So if the device is not
from the vendor of VISA driver, the license will not al-
low you to use their driver in this case. These drivers are
distributed as binary form so you may encounter the incom-
patibility between your host system(CPU, OS , OS version,
and so on) and VISA drivers. Python-VXI11 module can
fill this gap.

Python-VXI-11 modules was developed based on Open
Source product and distributed as a source code. So if your
host system support these open source and TCP/IP net-
work, which is common to most of modern PC, it eliminate
the issues related to the proprietarily VISA driver.

Python [8] is an object oriented interpreted programming
language, originally designed and implemented by Guido
von Rossum. Its source code is distributed as open source
and support most modern platform for computing. It is
widely used over the world, most notably in the Google.
Python is also used to implement large applications such
as Mailman and Zope. Python modules including PyLab,
Gnuplot, matplotlib for graph generation are provided as

Proceedings of IPAC’10, Kyoto, Japan WEPEB004

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems 2689



standard or external modules. It allow us to develop a pro-
gram to test a measurement device such as Oscilloscope in
very quick way. Python has been used as a tool for testing
and even developing control applications in KEKB control
system and J-PARC control system.

PYVXI11 IMPLEMENTATION
In this section, we will see how Python-VXI11

module is implemented. The main components of
Python-VXI11 module are VXI11.rpcl , VXI11.i and
setup.py.1 VXI11.rpcl is a VXI-11 protocol description in
ONC/RPC standard. It is converted to C source code and
header files using ”rpcgen” command. VXI11.i is an in-
put file for SWIG[9]. It is mostly direct conversion from a
header file generated by ”rpcgen”. ”swig” command con-
verts this file into C source code and header file and python
module which is imported into Python interpreter. In other
words, we don’t need much, if any, C programming for
Python-VXI11 module. ”setup.py”, like ”Makefile” auto-
mate the process to build and install the module into your
system. Python-VXI11 modules also includes some pure
python modules to help use of Python-VXI11 module.

Figure 1: Components in Python-VXI11 module and their
relations

Binary data transfer and ”END” bit handling
VXI-11 allows us to exchange waveform data in binary

format. So Python-VXI11 module developed here also sup-
ports it. VXI-11 defines ”reason” field in the structure for
the response to ”read” operation. ”reason” field of the De-
vice ReadResp structure consists of ”END”, ”REQCNT”
and ”CHR” bit fields. Use of these fields are defined in
VXI-11 specification as:

RULE B.6.23: To successfully complete a device read
RPC, a network instrument server SHALL:

1. Transfer bytes into the data parameter until one of the
following termination conditions are met:

(a) An END indicator is read. The END bit in rea-
son SHALL be set.

(b) requestSize bytes are transferred. The REQCNT
bit in reason SHALL be set. This termination
condition SHALL be used if requestSize is zero.

(c) termchrset is set in flags and a character which
matches termChar is transferred. The CHR bit
in reason SHALL be set.

(d) The buffer used to return the response is full. No
bits in reason SHALL BE set.

2. Return with error set to 0, no error, to indicate suc-
cessful completion. If more than one termination con-
dition is valid, reason contains the bitwise inclusive
OR of all the reasons.

As far as a device follows these rules, binary data exchange
using Python-VXI11 modules should not have problem. If
you encounter the device which does not strictly follows
this rule, you may need some tweak to Python-VXI11 mod-
ule.

USAGE

Use of Python-VXI11 is simple and straightforward.
The table 1 shows a sample code to read waveform data
from an oscilloscope and display these waveforms on
the screen of the host. A supplement python module,
TekOSC.py, hides the detail of Python-VXI11 module and
can be used as a template to support your device.

import TekOSC # TekOSC module uses

Python-VXI11 module internally

import time, pylab, matplotlib

#----- generate oscilloscope object

osc=TekOSC.TekOSC("xx.xx.xx.xx")

#----- setup a oscilloscope

osc.set_wf_binary()

osc.set_fulldata()

#----- get waveforms from channels 1 and 2.

w1=osc.get_waveform(1)

w2=osc.get_waveform(2)

#----- set up graph for drawing data

fig = pylab.figure()

fig.subplots_adjust(hspace=0.2, bottom=.14,

left=.14, right=.97, top=.92)

pylab.subplot(1, 1, 1)

pylab.title("PyVXI-11 Sample with PyLab")

pylab.xlabel("time(sec)")

pylab.ylabel("signal(volt)")

#----- plot waveform 1 and 2

pylab.plot(w1.x,w1.y)

pylab.plot(w2.x,w2.y)

#----- show graph on a screen.

pylab.show()

Table 1: A python script to generate the figure 2

WEPEB004 Proceedings of IPAC’10, Kyoto, Japan

2690

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems



This simple script of Python generates the graph shown
in the figure 2

Figure 2: Sample display of waveforms taken from a
VXI11 based oscilloscope

CONCLUSION
Python module to access VXI11 compatible device is de-

veloped. Combination of python interpreter and this mod-
ules simplifies the test of these equipment. Rich set of li-
braries available in Python even make it possible to develop
the application used for daily operation of accelerator. Cur-
rently implementation of the modules is based on SWIG
to generate glue routines for Python and RPC library. To
improve the performance of the module, ctypes module,
which is now a part of standard Python library, or cython,
another wrapper generator for Python-C library can be used
to replace SWIG.

REFERENCES
[1] ” VMEbus Extensions for Instrumentation: TCP/IP

Instrument Protocol Specification, VXI-11, Re-
vision 1.0.”, The VXIbus Consortium, 1995
http://www.vxibus.org/files/VXI Specs/VXI-11.zip.

[2] ”VMEbus Extensions for Instrumentation: TCP/IP-VXIbus
Interface Specification, VXI-11.1, Revision 1.0. ”, The VX-
Ibus Consortium,1995

[3] ”VMEbus Extensions for Instrumentation: TCP/IP-IEEE
488.1 Interface Specification, VXI-11.2, Revision 1.0.”, The
VXIbus Consortium,1995

[4] ” VMEbus Extensions for Instrumentation: TCP/IP-IEEE
488.2 Instrument Interface Specification, VXI-11.3, Revi-
sion 1.0.”, The VXIbus Consortium,1995

[5] ”IEEE Standard for Higher Performance Protocol for the
Standard Digital Interface for Programmable Instrumenta-
tion”, IEEE Std 488.1-2003 (Revision of IEEE Std 488.1-
1987), 2003

[6] ”Standard Digital Interface for Programmable Instrumenta-
tion - Part 2: Codes, Formats, Protocols and Common Com-
mands (Adoption of (IEEE Std 488.2-1992)”, IEC 60488-2
First edition 2004-05; IEEE 488.2, 2004

[7] LabView is a name of product by National Instrument.

[8] ”Python Tutorial”, Guido von Rossum, O’Reilly
Japan, Tokyo, 2007; http://www.python.org;
http://www.python.jp .

[9] ”SWIG : An Easy to Use Tool for Integrating Scripting Lan-
guages with C and C++”, David M. Beazley, the 4th Annual
Tcl/Tk Workshop, Monterey, CA. July 6-10, 1996.;”SWIG
1.1 Users Manual”, David M. Beazley, available online at
http://www.swig.org/Doc1.1/HTML/Contents.html,
1977.

[10] ”PyVISA (Release 1.1)”, Torsten Bronger, available on-
line at http://sourceforge.net/projects/pyvisa/,
2006.

Proceedings of IPAC’10, Kyoto, Japan WEPEB004

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems 2691


