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Abstract

We present a first look at the new code for self-
consistent, 2D simulations of beam dynamics affected by
the coherent synchrotron radiation. The code is of the
particle-in-cell variety: the beam bunch is sampled by
point-charge particles, which are deposited on the grid; the
corresponding forces on the grid are then computed using
retarded potentials according to causality, and interpolated
so as to advance the particles in time. The retarded po-
tentials are evaluated by integrating over the 2D path his-
tory of the bunch, with the charge and current density at
the retarded time obtained from interpolation of the parti-
cle distributions recorded at discrete timesteps. The code is
benchmarked against analytical results obtained for a rigid-
line bunch. We also outline the features and applications
which are currently being developed.

INTRODUCTION

Coherent synchrotron radiation (CSR) is an effect of
curvature-induced self-interaction of a microbunch with a
high charge as it traverses a curved trajectory. It can cause a
significant emittance degradation, as well as fragmentation
and microbunching of the electron bunch. Numerical simu-
lations of the CSR effects have proven to be extremely chal-
lenging because of: (i) the memory requirement associated
with storing the history of the beam bunch; (ii) difficulty to
accurately account for retardation; (iii) large cancellation
between E and B fields in Lorentz force; (iv) sensitivity
to numerical noise, exacerbated by presence of gradients
in relevant equations; (v) scaling of the self-interactions
in computations. Here we focus on the self-consistent 2D
CSR code developed by Li [1, 2]. The code is based on
integration of the retarded potential for a 2D charge distri-
bution (no vertical size). The present work transforms Li’s
original code from a particle-particle to a particle-in-cell
(mean-field) form, thereby enabling superior performance
in terms of efficiency and spatial resolution.

EQUATIONS OF MOTION

The dynamics of an electron in the bunch is governed by
the following equation:

d

dt
(γmev) = e (E + β ×B) , (1)

where β ≡ v/c, E ≡ Eext + Eself , B ≡ Bext + Bself .
Here Eext and Bext are external electromagnetic (EM)
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fields, and Eself and Bself are the EM fields from bunch
self-interaction, which depend on the history of the bunch
charge distribution ρ and current density J via the scalar
and vector potentials φ and A:

Eself = −∇φ− 1

c
∂tA, (2a)

Bself = ∇×A, (2b)

where

φ(r, t) =

∫
dr′

|r − r′|ρ
(
r′, t− |r − r′|

c

)
, (3a)

A(r, t) =

∫
dr′

|r − r′|J
(
r′, t− |r − r′|

c

)
. (3b)

For an ultrarelativistic bunch on a circular orbit, the EM
self-fields are dominated by CSR effects.

In order to avoid singularity at |r − r′| = 0, the integra-
tion is performed in polar coordinates of the lab frame:

[
φ(r, t)
A(r, t)

]
=

Mint∑
i=1

∫ Rmax

0

∫ θi
max

θi
min

⎡
⎣ ρ

(
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c

)

J
(
r′, t− R′

c

)
⎤
⎦ dR′dθ′,

(4)
where, in numerical implementation,Mint is the number of
“cuts” of the grid by the circle of causality (up to 4), similar
to what has been done in [3]. Rmax is computed from the
circle of causality.

Frames of Reference

The algorithm for efficient computation of retarded po-
tentials requires that we work in two different coordinate
systems (frames): Frenet frame (FF) and the lab frame
(LF). These two have been used in the original implemen-
tation of Li’s code. In addition to these two frames, and for
the purposes of the gridded mean-field modification of Li’s
code, we also use the grid frame (GF).

Frenet frame (x, s) is defined so that x ≡ r − r0 is the
horizontal offset from the designed orbit, and s ≡ r0θ is
the longitudinal coordinate:

x = r − r0

s− sp = r0θ, (5)

where sp is the position along the beam line at the end of
the previous lattice element, r and θ are polar coordinates
of the curved orbits, and r0 is the radial coordinate of the
designed orbit.

Lab frame (X,Y ) is defined as the Cartesian coordinates
in the plane of the beam lattice. The transformation be-
tween the FF and LF depends on the type of the section of
the lattice (drift or bend).
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Grid frame (X̃, Ỹ ) is defined as the Cartesian coordinates
tilted by angle α in LF (see Figure 2), and normalized so
that it is always given by [−0.5, 0.5]× [−0.5, 0.5].

PARTICLE-IN-CELL REPRESENTATION

In order to improve the phase-space resolution of Li’s
code [1, 2], a better sampling of the DF is needed. Ac-
complishing this by increasing the number of gaussian
macroparticles is computationally prohibitive, as the com-
putation of retarded fields scales as O(N2). We now
consider an alternative approach to obtain a representa-
tion of the DF (or, more precisely, its moments ρ(r, t) =∫
f(r,v, t)dv and J(r, t) =

∫
vf(r,v, t)dv): sampling

the DF by a large number of point-charge particles and
binning them on a discrete grid, in order to obtain a mean-
field approximation. We thereby convert a point-to-point
method of [1, 2] to a mean-field one.

As an illustration, Figure 1 shows an analytically known
particle distributions on a 32 × 32 grid (left column) sam-
pled by 322 gaussian macroparticles (middle column) and
sampled by 50 × 322 point-charge particles (right col-
umn). It is visually evident that the distribution’s small-
scale structure is much better represented by the point-
charge particle model, as can also be quantified by the
signal-to-noise ratio.

Figure 1: Fictitious charge distribution on a grid: exact
(left), using gaussian macroparticles, as in [1, 2] (mid-
dle), and using point charge particles deposited on the grid
(right).

Discrete Grid

The distribution function (DF) of the beam sampled by
N point-like particles is given by Klimontovich distribu-
tion:

fK(x,v, t) = q

N∑
i=1

δ
(
x− x(i)(t)

)
δ
(
v − v(i)(t)

)
,

(6)
from which the charge density is easily found by integrat-
ing over velocities:

ρ(x, t) = q

N∑
i=1

δ
(
x− x(i)(t)

)
, (7)

where q is the charge per particle, and Q is the total charge
of the bunch, so that q ≡ Q/N . The coarse-grained DF,
defined on a grid with (NX , NY ) gridpoints and resolution
h ≡ (hX , hY ) (Figure 2), is given by

f(x,v, t) =

∫ h

−h

p (x̄) fK(x+ x̄,v, t) dx̄, (8)

where p(x) is the normalized particle deposition scheme
(Figure 3).

Figure 2: Computational grid. Blue (X,Y ) coordinates
denote LF, and the computational box defines GF.

Figure 3: Deposition functions, in increasing order k =
1, 2, 3: Nearest Grid Point (NGP), Cloud In Cell (CIC) and
Triangular Shaped Cloud (TSC).

Removal of Numerical Noise

The properties of numerical noise in particle-in-cell sim-
ulations – due to the finiteness of the computational domain
and the graininess of the DF – and its efficient removal
using wavelet thresholding, has been studied earlier [4].
This methodology, which yields improvement in both ac-
curacy (“cleaner” physical results) and efficiency (wavelet
compression) of the simulations is also implemented in the
present algorithm. Simulations can also be ran with this
feature turned off. A detailed study of the importance and
efficiency of wavelet denoising in the scope of this code is
currently underway.
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ALGORITHM OUTLINE

The alternative CSR simulation using discrete grid can
be outlined as follows:

Step 1: Sample the DF.
Sample the initial DF with N particles (using, for in-
stance, von Neumann’s rejection method) or read it in
from a data file.

Step 2: Define grid and deposit particles.
The charged particles are deposited onto a finite grid
(Figure 2).

Step 3: Compute spatial and time derivatives of the re-
tarded potentials on the grid.
The derivatives of the gridded quantities are computed
in GF by tri-quadratic interpolation at off-grid points
and then transformed from GF to LF.

Step 4: Compute the self-fields on the grid.
Take spatial and temporal derivatives of gridded po-
tentials and combine them to obtain the self-forces in
GF. Transform to LF and then to FF by applying trans-
formation matrices.

Step 5: Compute self-forces on each particle.
Self-forces acting on each particle in FF are com-
puted by bi-quadratic interpolation from the previ-
ously computed gridded values in FF.

Step 6: Advance particles in time.
The DF sampled by particles is advanced by a small
timestep Δt by the leap-frog scheme.

The steps 2-6 are repeated until the end of the simulation.

Computational Efficiency

The computation of charge density and currents from the
set of particles is done by simple particle deposition, which
is an O(N) operation. Also an O(N) operation is solv-
ing a set of coupled nonlinear equations needed for com-
puting momenta of each particle. The self-fields are also
computed on the grid, so that the computation of the wake-
fields scales as O (

N2
XN2

Y

)
. Overall, this algorithm scales

as O (
N2

XN2
Y

)
+ O(N). The algorithm in the version of

[1, 2] scales as O (
N2

)
, where N is the number of macro-

gaussians. This means that the new algorithm with a reso-
lution of N1×N2 should be computationally as demanding
as the earlier implementation of [1, 2] with N1N2 macro-
gaussians, while possessing much-improved spatial resolu-
tion (see Figure 1).

BENCHMARK: RIGID LINE BUNCH

The first test of accuracy of the new code is against a
1D rigid line bunch steady state model for which analytic
solutions can be found [5]. Figure 4 shows the effective
forces due to the retarded potential at the end of the first
bend, computed by the code versus the analytic results. The
agreement is excellent.

Figure 4: Analytic versus computed effective retarded
forces: N = 512000 particles on a 64×64 grid. R = 25.13
m, θ = 11.4o, σz = 50μm, ε = 1 nm, Q = 1 nC, E = 12
GeV.

DISCUSSION AND FUTURE WORK

We presented a first look at the new, 2D particle-in-cell
code designed to simulate CSR effect in electron beams.
The excellent agreement with the rigid bunch benchmark
provides the first proof-of-concept.

Our current and future efforts are focused on the follow-
ing: (i) optimization/parallelization of the code; (ii) more
detailed benchmarking of the code; (iii) evaluation and uti-
lization of wavelet methodology in both reducing numer-
ical noise and optimizing algorithms computational effi-
ciency.

Upon successfully benchmarking and optimizing the
new code, we expect that the first application will be simu-
lating Jefferson Labs Free Electron Laser and its proposed
upgrade JLAMP [6].
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