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Abstract 
A new method, using the parabolic equation (PE), for 

the calculation of both high-frequency impedances of 
small-angle taper (or collimator) is developed in [1]. One 
of the most important advantages of the PE approach is 
that it eliminates the spatial scale of the small wavelength 
from the problem. As a result, only coarser spatial meshes 
are needed in calculating the numerical solution of the 
PE. We developed a new code based on Finite Element 
Method (FEM) which can handle arbitrary profile of a 
transition and speed up the calculation by orders of 
magnitude. As a first step, we completed and 
benchmarked a two-dimensional code. It can be upgraded 
to three-dimensional geometry. 

INTRODUCTION 
Although the computer is powerful nowadays, it is still 

a challenge to compute the wake field of an ultra short 
bunch over a long structure, such as a transition from a 
regular beam pipe to an insertion device. The longitudinal 
impedance of a small-angle collimator, step-in and step-
out transitions, and a pillbox cavity has been calculated in 
previous work [1] using Mathematica [2] based on 
parabolic equation. This method can calculate high 
frequency impedance using relatively coarse mesh. 

In this paper we developed a new code based on Finite 
Element Method (FEM), which can handle arbitrary 
geometry.  As a first step, we completed a two-dimension 
code, and benchmarked our code with Mathematica code 
[1] and ECHO2 [3]. Our code shows good agreements 
with other two codes and it has short execution time and 
has potential for three-dimensional geometry. 

The FEM (sometimes referred to as finite element 
analysis (FEA)) is a numerical technique for finding 
approximate solutions of partial differential equations 
(PDE) as well as of integral equations. It is a powerful 
approach which can better represent the geometry. The 
applications of FEM in particle accelerator field is 
extensive: magnet design, RF cavity design, 
impedance/wake field calculation, beam dynamics, etc.. 

The general wave equation is 
JEE ωμik =+∇ 22                       (1) 

Where λπω /2/ == ck  is propagation constant and μ 
is permeability.  

We consider an axisymmetric geometry of a beam pipe 
with a varying radius and a straight axis which is chosen 
as the z-axis of the cylindrical coordinate system.  The 
beam’s field in a beam chamber can be divided into two 

parts: field in open space and field due to the image 
charge and current (so called image field). In circular 
cylindrical coordinates, the radial image field ε for a 
single frequency component ~ exp(iωt) satisfies the 
equations  
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and perfect metal boundary condition at the surface of 
beam pipe 
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Here nr and nz is the unit normal, I0 is the beam current. A 
thin beam is assumed. The longitudinal field can be 
calculated from the radial image field as 
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Finally, the (normalized) longitudinal impedance can be 
estimated as an integral of the longitudinal field  

dz
r

r
rkI

icdzzrEe
IZZ

Z
r

z
ikz

0000000

1),0(14
4/ =

∞∞
−

∂
∂

−==−= ∫∫
επ

π
. (5) 

 
To speed up the calculation, the integral in Eq. (5) can be 
estimated using indirect method [4, 5]:  
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where νn are the roots of the first kind of Bessel function 
of zero-th order; L0 is the length of the structure and a0 is 
the aperture at the exit.   
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Eq.(8) is parabolic equation used in reference [1].  The 
FEM can solve either the full equation (2) or parabolic 
equation (8). The results presented in this paper are from 
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the parabolic equation in order to benchmark with 
Mathematica code [1], which uses PE. 

BENCHMARK WITH MATHEMATIC 
CODE 

A small-angle collimator is used to benchmark with the 
Mathematica code. The collimator has a geometry given 
by  
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where a0 is the maximum aperture of the collimator, Lcoll 
is the length of the collimator.  A is a factor that 
determines the minimum aperture and A=0.5 is used for 
this comparison. Figure 1 shows the comparisons of fields 
given by Mathematica and FEM codes.  Dimensionless 
coordinate r/a0 and 2

0/)( kazz =ζ  are used. Figure 2 and 
3 show the calculated impedance in low frequency region 
and high frequency region. Note that the dimensionless 
parameter l is used in the figure. It is defined as 

2
0/ kaLl coll= ,                                (10) 

which is inversely proportional to the frequency.  The two 
codes have very good agreement. At extreme low 
frequency, both codes converge to the theoretical value 
[6]  
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Figure 2 and 3 show the impedance dependence on l. 
Therefore, the longitudinal impedance Z(ω,L) of a 
structure with length L can be scaled from the impedance 
of a longitudinal compressed structure R (ω, L/α)  with 
length L/α [7]  

)/,/(),( ααωω LRLZ = .                    (12) 
This scaling property can greatly simplify the numerical 
calculation of the longitudinal impedance of small angle 
structure. 

        

       
Figure 1: Real (Left) and imaginary (right) field 
calculated by Mathematica code (top) and FEM code 
(bottom), the pink line is the boundary of the beam pipe. 
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Figure 2: Normalized impedance in low frequency region 
calculated by FEM and Mathematica codes.  The pink 
dashed-line is the theoretical value by Eq. (11), which 
was first obtained in [6]. 
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Figure 3: Normalized Impedance in high frequency region 
calculated by FEM and Mathematica codes. 

BENCHMARK WITH ECHO2 CODE 
ECHO2 is a two-dimensional code which calculates the 

wake field in time domain and the impedance can be 
derived from the wake by Fast Fourier Transform (FFT). 
Figure 4 shows the geometry of two collimators used for 
the comparisons. Small dimensions are chosen in both 
examples in order to reduce the CPU time of ECHO2. 
Meanwhile a small-angle collimator is used since we use 
parabolic equation. One good example is the transition 
section from a regular beam chamber to an insertion 
device. Figure 5 shows comparison of the impedance of 
the 1st collimator using ECHO2 code and our FEM code.  
The ECHO2 code used a short bunch length of 0.1mm 
and mesh size of 0.01mm in order to calculate the 
impedance with high frequency up to 1000 GHz. The 
agreement is good up to 1000 GHz. The agreements 
between the two codes for the second collimator are 
excellent as shown in Figure 6.  
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Figure 4: Geometry of collimator one and two used for 
comparisons 
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Figure 5: Impedance of the 1st collimator  
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Figure 6: Impedance of the 2nd collimator  

DISCUSSION ON NUMERICAL ISSUES 
We checked the convergence of the solver. When l is 

small, such as high frequency field, fine mesh is required 
because the fields as shown in Figure 1 have fine 
structure. Both triangular grid and quadrilateral grid are 
used in the solver. There is a weak dependence on the grid 
shape as shown in Figure 7. In low frequency domain, the 
result doesn’t vary with grid shape. The small variation of 
the impedance in high frequency is due to the difference 
of mesh density. Linear element is used in the above 

calculation. Higher order elements can be used to improve 
the accuracy. 
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Figure 7: Comparison of triangular and quadrilateral grid 

CONCLUSION 
A 2D FEM code based on PE approach is developed to 

directly calculate the high frequency impedance for small 
angle tapers/collimators. It agrees well with ECHO2. The 
FEM code can handle arbitrary geometry and speeds up 
the calculation by orders of magnitude (couple of seconds 
for one run) comparing with Mathematica code. The 
impedance is directly calculated in frequency domain. 
These merits make our code much easy to calculate the 
wake of ultra short bunch. The same approach can be 
applied to Three-Dimensional geometry.  
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