
GENERIC MODEL HOST SYSTEM DESIGN*

P. Chu#, J. Wu, SLAC, Menlo Park, CA 94025, U.S.A.
G. Shen, BNL, Upton, NY 11973, U.S.A.

J. Qiang, LBNL, Berkley, CA 94704, U.S.A.

Abstract
There are many simulation codes for accelerator

modelling; each one has some strength but not all. A
platform which can host multiple modelling tools would
be ideal for various purposes. The model platform along
with infrastructure support can be used not only for online
applications but also for offline purposes. Collaboration is
formed for the effort of providing such a platform. In
order to achieve such a platform, a set of common physics
data structure has to be set. Application Programming
Interface (API) for physics applications should also be
defined within a model data provider. A preliminary
platform design and prototype is discussed.

INTRODUCTION
For modern accelerators, online model is necessary for

beam control and physics studies. However, usually
simple online model is not sufficient for many physics
problems. For applications based on real-time model
data, they have to run model inline, which can take tens of
seconds for going through machine data acquisition,
model computation and result update. Also, there are
many other simulation codes which may provide better
accelerator modelling than the online model in use.
Among the existing modelling codes, each one has some
strength but not all. An idea is to provide a platform to
host multiple modelling tools so one can switch among
the codes easily. A middle layer in between any model
program and user application can provide transparent
access to the model data. Additionally, the software
infrastructure for such model platform should be
extremely robust. User applications can be benefited
from simple model access and control Application
Programming Interface (API). To make such platform
useful for beam control, the performance should be
greatly improved for many beam dynamics codes.

The model codes are the engine for beam computation.
The supporting infrastructure, which prepares model input
parameters, sets up a model run and packages model data,
is called Model Engine. The Model Engine then serves
up model data via some commonly used communication
protocol to its client applications.

ARCHITECTURE OVERVIEW
To integrate various model codes within a common

platform, data format conversion between each individual
code and the platform data structure is an essential
component of the software architecture. Model run

control for scheduling and managing multiple runs is
another crucial component.

In Fig.1, a schematic diagram shows the data flow for
the model engine and its automated data update service.
Detail for each component is explained here:
• Model input data will be obtained from relational

database (RDB) for static information such as device
location and names, from control system for lattice
configuration such as magnetic fields and
accelerating cavity settings. Beam parameters at the
beginning of tracking such as phase space
coordinates and Twiss parameters should be read
from diagnostics data provider for extant machine
model or from RDB for design model.

• The model input data is then formatted in a common
data structure. For each specific modelling code,
there will be a data adaptor to convert the common
data format to the corresponding code input format.

Figure 1: Data flow for model engine and service.

*Work supported in part by the DOE Contract DE-AC02-76SF00515.
#pchu@slac.stanford.edu

Proceedings of IPAC’10, Kyoto, Japan TUPEC071

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques 1883

• A model run-control program can then schedule a
model run and monitor the run status. This model
run-control program should provide user-friendly
interface for changing physics parameters. A couple
of run-control prototypes have been tested.

• After a model run, the model data are then converted
from specific model code output data format to a
common data structure.

• The final structured model data are posted to a model
service provider which can then serve up the data to
any client.

• Physics applications can access the final data via
simple API over the network.

MODEL ENGINE
Model engine is a platform capable of running some

predefined model codes. Previously, some work has been
done for start-to-end simulation [1, 2]. The work includes
run-control program and easy user interface for physics
parameter editing.

Model engine should consider the following items:
• A common model data structure. XAL [3-5]

accelerator hierarchy format can provide common
input data structure. The output data should be
similar to the XAL model data object which is
capable of describing a modelled beamline.

• Model data adaptor. Each specific code needs a
conversion between the common data structure and
its own format for both input and output. The
complexity level for each adaptor varies from code
to code.

• Model input data storage. File or RDB can be the
input data storage. Initially, model seed parameters
can be saved as files. Each model run scenario will
have a corresponding directory for saving both input
and output files.

• Model output data storage. RDB and memory will
be the primary storage for better performance and
management reason. Files can be an optional choice.
Because the complexity of many model runs, it is
preferable to store the model data in RDB. For quick
deployment, file I/O should be support as well.

Model Codes
In the following, we will use LINAC Coherent Light

Source (LCLS) as an example to elaborate the necessity
of having this model server concept. LCLS is an electron
LINAC machine; therefore, the discussion will mostly
concentrate on LINAC related issues. Additionally, some
circular machine subjects will be mentioned as well.

During the LCLS commissioning and also current
operation, XAL has contributed majorly in setting up the
machine model and acted as the platform for high-level-
applications; yet due to some new features of the LCLS
machine, there is need to improve the model itself as well
as improving its speed and bringing it online.

With such a model engine, the beam dynamics can be
simulated with real machine parameters and compared to

real measurement data. For now, there is no single code
which can serve this purpose. The popular approach is to
invoke IMPACT for injector simulation, Elegant for
LINAC/accelerator simulation, and GENESIS for Free
Electron Laser (FEL) simulation. In the following, we
give some details of these codes.
• XAL– envelope tracking optics code.
• IMPACT-T [6]—3D multi-particle tracking code

capable of simulating electrons emitting from
cathode, and contains full space-charge effect, 1-D
Coherent Synchrotron Radiation (CSR) effect, and
wake fields in the accelerating cavities. It is a parallel
code and can also run on single processor.

• Elegant [7] – 3D multi-particle tracking code
containing 1-D CSR effect, simplified mode for
space charge effect, wake fields in the accelerator
cavities, and some scattering process like electrons
going through the foil. . It is a parallel code and can
also run on single processor. The Elegant code can be
used also for an electron storage ring, but we will not
explore the details of its function for ring here

• GENESIS [8] —3D FEL time-dependent code
devoted to simulate beam dynamics and FEL
radiation. It is a parallel code and also can run on
single processor.

• Tracy [9] - 3D tracking code including the realistic
fringe field. It can be used for an electronic storage
ring, injection straight section, and a complex facility
such as RICH.
Among the above mentioned codes, three of them

(IMPACT-T, Elegant, and GENESIS) are serving the
start-to-end (S-2-E) simulation for LCLS, which is a
self-amplified spontaneous emission (SASE) FEL.

Due to the fact that the above mentioned three codes
are independently developed, data flow and user
interface are the bottle neck for speeding up the
simulation time. The idea of generic model host
system is an extension of the S-2-E set up. The new
platform will not only provide S-2-E functionality but
also quasi-online capability.

Furthermore, some code improvement work is under
consideration. In particular, the FEL itself will be
manipulated. For example, in self-seeding FEL scheme,
the SASE FEL generated from the first undulator will
be purified spectrally; hence, X-ray optics code has to
be integrated with FEL code. These codes once ready,
will be integrated into the model engine picture.

Computer Cluster
Optionally, many multi-particle beam dynamics

simulation codes can be run on computer clusters for
good performance. As emphasized above, speeding up the
model calculation is important and therefore, parallel
computation can help.

TUPEC071 Proceedings of IPAC’10, Kyoto, Japan

1884

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

Yet another reason is that such a model engine should
serve multiple clients for multiple tasks. Data
management and definition of read-only and writable data
has to be carefully handled in such multi-task scenario.

In principle, the prototype of such a model engine can
be built upon single PC concept; yet, we prefer to mention
this computer cluster here to emphasize its potential
importance as explored above. Whenever we want to
speed up the process, parallel capability is always
important.

MODEL SERVICE
On top of the Model engine, there should be a reliable

and seamless mechanism for serving up model data to any
subscribed client applications.

Main concern for the model service technology
selection is the communication protocol. Because the
model data can be complicated structure, simple
communication protocol cannot satisfy such need. There
are several possible candidates for the model service.
Evaluation and prototyping with these protocols is
underway. The communication protocol choice also
depends on the performance, reliability and easy-to-use.
There could be many clients accessing the same model
data concurrently, therefore, the performance and
robustness should be a great concern. On the client side,
we intend to support Java, Matlab and Python-based
programs.

Model Data
Typically, beam model data should be updated

periodically. For example,
• Twiss Parameters
• R Matrices
• RMS phase space coordinates

CONCLUSION
Model server prototype study is underway [10].

Present work is focused on existing tools integration such

as using one model code with simple run-control
program. Model output data will be passed to a service
program using a new EPICS Channel Access based
program. A simple client program such as a beta function
display will then consume the model data. The prototype
work is expected to finish within a couple of months.

REFERENCES
[1] M. Borland et al, “Start-to-End Simulation of Self-

Amplified Spontaneous Emission Free-Electron
Lasers from the Gun through the Undulator”, NIM A
483 (2002) 268-272.

[2] C. Larrieu, private communication.
[3] http://sourceforge.net/projects/xaldev/.
[4] https://wiki.ornl.gov/sites/xaldocs/default.aspx.
[5] J. Galambos, et al, “XAL Application Programming

Structure,” p. 79, Proceedings of 2005 Particle
Accelerator Conference.

[6] J. Qiang, S. Lidia, R. D. Ryne, and C. Limborg-
Deprey, “A Three-Dimensional Quasi-Static Model
for High Brightnees Beam Dynamics simulation,”
Phys. Rev. ST Accel. Beams, vol 9, 044204 (2006).

[7] M. Borland, “elegant: A Flexible SDDS-Compliant
Code for Accelerator Simulation,” APS LS-287,
2000.

[8] S. Reiche, ``GENESIS 1.3: a fully 3D time-
dependent FEL simulation code", Nucl. Instrum.
Methods Phys. Res., Sect. A 429, 243 (1999).

[9] J. Bengtsson, “TRACY-2 User’s Manual”, SLS
Internal Document, February 1997; M. Böge,
“Update on TRACY-2 Documentation”, SLS Internal
Note, SLS-TME-TA-1999-0002, June 1999.

[10] G. Shen et al, “Design of Accelerator Online
Simulator Server Using Structured Data”, these
proceedings.

Proceedings of IPAC’10, Kyoto, Japan TUPEC071

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques 1885

