
Abstract

Serpentine is a Python library, written for the purpose of
simulating charged particle accelerators. It has been writ-
ten to allow for the simulation of both rings and single-shot
machines in a light-weight way (i.e. without requiring sig-
nificant computational resources for typical calculations,
such as the determination of transfer matrices, or matching
of Twiss parameters), and has been structured to be highly
modular (i.e. allowing extension of the simulations to in-
clude effects not already included in the base installation).
Through the use of the Universal Accelerator Parser (UAP),
Serpentine has no need for a new lattice representation, and
allows access to any lattice format understood by UAP. The
operation of this code on several complex accelerator de-
signs is demonstrated.

INTRODUCTION

Computer simulations of charged particle accelerators
is fundamental to their construction, and the complexity
of these codes has increased not only with advances in
computer hardware, but also with the understanding of the
physics underlying the performance of these machines.

Several codes, each with its own specialisation, now
dominate the field, and almost all current and planned ma-
chines are described, either in whole, or in part, using the
formats provided by this small subset of packages. While
these packages cover almost all of the calculations neces-
sary for design and analysis of these machines, the authors
know of no code that operates in a way that allows easy
extension of complex features if necessary, while being ex-
tremely lightweight in its default state.

Serpentine, the code introduced in this paper, aims to fill
this niche.

ADVANTAGES OVER ALTERNATIVES

As mentioned, numerous others packages exist for the
purpose of modelling the dynamics of accelerated beams,
so it is important to make it clear in which ways the code
presented here provides an advantage over these alterna-
tives.

1. Light–weight. Since many of the most common oper-
ations required of beamline modelling tools are based
on simple matrix manipulations, the default state of
this code can be very light computationally.

2. Python–based. Presently, Python is an extremely pop-
ular choice of language, and is used to solve a wide
range of differing software problems. This large vari-
ety of different uses means that a lot of complex data

∗ stephen.molloy@rhul.ac.uk

manipulation and calculation problems have already
been solved by the wider community, and may simply
be imported into the working environment in order to
gain that functionality.

3. Free. While other codes rely on proprietary packages
for their operation, Serpentine, through its reliance on
Python, does not require the purchase of a license to
operate.

4. Object–oriented. As a design philosophy, the authors
believe that an object–oriented approach has many ad-
vantages over a more linear, functional, style. This is
a matter of taste, but it is believed that a significant
fraction of our users will see a benefit from the ability
to use a more modern programming paradigm.

5. Modular. Serpentine has been authored in such a way
as to allow easy addition of different elements, more
complex physics, or extenstion to different scenarios.
For example, it is very simple to inherit from an exist-
ing class in order to design a completely new acceler-
ator element.

6. Flexible. The class structure of Serpentine allows sim-
ple manipulation and alteration of accelerator designs
in a way that is not possible with any other codes
known to the authors.

7. Control. A Python module for interfacing with the
EPICS control system is available, and, since many
accelerators are controlled using this system, this
raises the interesting possibilty of controlling an ac-
celerator from an environment identical to that in
which simulations were conducted.

PHYSICS

Since this is a beta release of this code, most effort was
directed at ensuring the correctness of the physics on which
the rest of the code is built, and optimisation for speed was
not a primary consideration.

Note that, although future extension to multi-species
physics is planned in the near future, Serpentine currently
performs all physics based on an assumption that it is elec-
trons that are traversing the machine.

Twiss Propagation and R–matrices

The transfer matrices across each element are calculated
and stored with that beamline element object upon instan-
tiation of the Serpentine object holding the lattice descrip-
tion, so calculations of these matrices for individual ele-
ments is not necessary, and a determination of the matrix

SERPENTINE: A NEW CODE FOR PARTICLE TRACKING

Stephen Molloy∗, Stewart Boogert, Royal Holloway, University of London, UK

TUPEC060 Proceedings of IPAC’10, Kyoto, Japan

1862

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques



between any two points on the beamline can be performed
by simple multiplication of the appropriate matrices.

Since the Twiss parameters are purely linear functions of
an accelerator lattice, they can be calculated directly from
the R-matrices stored with each beamline element. The ini-
tial Twiss parameters required for the propagation calcula-
tion are stored as an attribute of the Serpentine object.

Tracking

Tracking involves two loops: an outer loop around the
elements, and an inner loop around each of the particles.

Although each element already contains an object speci-
fying the transfer matrices, this is only applicable to a par-
ticle with the design momentum, so, when looping around
the particles, the transfer matrices are recalculated in order
to take account of any deviation from that value, and the
6D position vector is transformed by the recalulated matri-
ces. After tracking has been performed for all particles, the
transfer matrices are then recalculated for the design mo-
mentum, and the outer loop advances to the next element.

Linear Elements

The particle dynamics within the linear elements can be
computed by considering the Hamiltonian for the motion
of the particles within the EM field.

The Hamiltonians used are based on the usual, curvi-
linear, reference frame that follows the synchronous par-
ticle, where the longitudinal coordinate has been replaced
by time, t. This means that the particle coordinates are
described in a Hamiltonian formalism in which the posi-
tion coordinates, x, y, and z, represent the distance along
each of the curvilinear degrees of freedom from the syn-
chronous particle in metres, x′ and y′ are the transverse mo-
menta normalised by total momentum of the particle (and
are given in units of radians), and the conjugate partner to
z is the particle’s fractional momentum error, ΔP

P .
In order to preserve the symplecticity of the resulting

equations of motion – the property that the phase space is
conserved by these transformations – it is important that,
if the equations should be truncated to some order, that the
Taylor series truncation is performed on the Hamiltonian
itself, and not on the resulting equations of motion. This is
due to the fact that Hamilton’s equations are guaranteed to
preserve symplecticity, while limiting a Taylor series may
break this. In other words the equations of motion are al-
ways constructed perfectly from the Hamiltonian, however
the Hamiltonian itself may be an approximation.

Correctors are the only linear elements not dealt with in
precisely this way. Instead they are treated as a drift of
half of their length, followed by the appropriate angular
kick, and then another drift of half of their length. This is,
obviously, an approximation to their true action, however,
for the small kicks normally imparted by these devices, this
will give a result that is very close to exact.

Higher Order Magnets

While the motion through linear elements may be calcu-
lated by solving the equations of motion that result from
analysing the Hamiltonian, no closed form solution exists
for motion through higher-order elements. Thus these com-
ponents require a different approach.

Currently, the only higher order element implemented in
Serpentine is the thin sextupole (i.e. a sextupole field where
it is assumed that the action of the field occurs entirely at
the longitudinal centre of the magnet). Thus all sextupoles
are modelled as a field–free drift space for half of the length
of the sextupole, followed by a kick based on the integrated
strength of the field at the location of the particle, and then
another drift region of hlaf the length.

While this is obviously a simplification of the physics,
it should be noted that motion through a sextupolar field
is not soluble in closed form. In addition, by performing
a Yoshida factorisation based on the Lie transform of the
Hamiltonian [1], it is possible to show that this approxi-
mation (that of simplifying the action to a drift–kick–drift),
yields results of similar accuracy to a tenth-order truncation
of the Taylor series of the Hamiltonian.

Although future releases of this code will include a
higher order Yoshida factorisation, and will thus yield even
more accurate results for higher order fields, reliable results
may still be achieved with the present algorithm.

Acceleration

This beta release of Serpentine does not yet support ac-
celeration of beams, so it is not possible to perform sim-
ulations of machines that involve acceleration elements.
Due to the fact that this rules out the use of this code for
many important simulations, it is expected that this will be
changed in the next release of the code.

AN EXAMPLE: BEAM-BASED
ALIGNMENT AT ATF2

ATF2 [2] is a test facility currently operating at KEK,
Japan. It uses a linac to accelerate a 1.3 GeV electron
beam, which is then injected into a damping ring, before
extraction into a line designed to vertically focus the beam
to 35 nm.

This example tracks the beam from the exit of the damp-
ing ring to the dump at the end of the extraction line. The
Twiss parameters are shown in figure 1, as well as a com-
parison with those calculated by Lucretia (an alternative
tracking code) in figure 2.

Algorithm

This code implements an algorithm known as Beam
Based Alignment (BBA), and demonstrates its effectiveness
in determining the offset of a quadrupole focusing magnet.

For a bunch moving through a quad with an offset, the
bunch will experience a steering force in addition to the fo-

Proceedings of IPAC’10, Kyoto, Japan TUPEC060

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques 1863



0 10 20 30 40 50 60 70 80 90
S / m

0

2000

4000

6000

8000

10000
B
e
ta
_
x
/
m

&
B
e
ta
_
y
/
m

Beta_x

Beta_y

Figure 1: Twiss parameters calculated using Serpentine.

0 10 20 30 40 50 60 70 80
0

2000

4000

6000

8000

10000

12000

14000

S / m

B
et

a_
x 

/ m
 &

 B
et

a_
y 

/ m

 

 
Beta_x
Beta_y

Figure 2: Twiss parameters calculated using Lucretia.

cussing effect, leading to a negative impact on the beam
quality. It is, therefore, important to ensure that the beam
travels through the magnetic centre of each element, and so
it is necessary to deploy a technique to measure any mis-
alignments.

BBA uses a corrector magnet to change the trajectory of
the beam through the quadrupole, and measures its posi-
tion at two BPMs: one located immediately downstream of
the quadrupole (the Quad BPM), and another a few metres
downstream of that (the witness BPM).

After this, the strength of the quad is dropped by 50%,
and the corrector sweep is repeated.

Since a beam travelling through the centre of the
quadrupole should not have its trajectory altered by its
magnetic field, the corrector setting for which there is no
change in position due to the alteration of the quadrupole
field, is the setting for which the beam is travelling through
its magnetic centre.

Results

Figure 3 shows the x and y orbits before and after the
misalignment of the quad.

The simulation performs the corrector sweeps men-
tioned previously, along with the alteration of the focussing
strength of the quad, and records the values from the Quad
and witness BPMs. Once the two sweeps have been com-

0 10 20 30 40 50 60 70 80 90
S / m

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

x
/
m

0 10 20 30 40 50 60 70 80 90
S / m

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

y
/
m

Figure 3: The beam position at each BPM due to a perfect
machine (blue), and the misaligned machine (red).

pleted, two straight lines are fit, and their crossing point
calculated.

The results are shown in figure 4, and it can be seen that
this algorithm does a good job of finding the misalignment
given to the quadrupole. The reason the result from the fit
(0.104 mm) is not exactly equal to the value given to the
quad (0.100 mm) is due to the fact that BPM is located
adjacent to the quad, not at precisely the same location,
and so the positive angle of the trajectory results in this
algorithm slightly over-estimating the results. This is an
expected effect that may be eliminated by estimating the
magnitude of the angle induced by the corrector field.

-0.0008 -0.0006 -0.0004 -0.0002 0.0000 0.0002 0.0004 0.0006 0.0008

Quad BPM / m

-0.0020

-0.0015

-0.0010

-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

W
it
n
e
s
s
B
P
M
/
m

Measured offset = 0.104 mm

Figure 4: Results of the BBA algorithm.

This example demonstrates the ability of Serpentine to
successfully handle common tasks in an accelerator simu-
lation.

REFERENCES

[1] A. Wolsi, “Nonlinear Single-Particle Dynamics in High En-
ergy Accelerators”,

http://pcwww.liv.ac.uk/~awolski/main_teaching_

nonlineardynamics.htm

[2] A. Seryi, et al., “ATF2 Commissioning”, Invited talk at
PAC09, May 2009

TUPEC060 Proceedings of IPAC’10, Kyoto, Japan

1864

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques


