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Abstract

In this paper, we analyzed the linac optics design re-
quirement for a multi-pass energy recovery linac (ERL) for
arbitrary number of linacs. A set of general formula of con-
strains for the 2-D transverse matrix is derived to ensure de-
sign optics acceptance matching throughout the entire ac-
celerating and decelerating process. Meanwhile, the rest
free parameters can be adjusted for fulfilling other require-
ments or optimization purpose. As an example, we de-
sign the linac optics for the future MeRHIC (Medium En-
ergy eRHIC) project and show the optimization for small β
function.

INTRODUCTION

The uniqueness of Energy Recovery Linac (ERL) at-
tracts the attention of many accelerator physicists in the
past decades, because of its ability to provide high current
beam with low beam emittance. It is proved to be suitable
in many applications such as synchrotron light sources, free
electron lasers and electron ion colliders. In contrary to
the ring-type accelerators, the electron beam is used once;
only the energy of the beam is recovered before the beam
dumping. This feature avoids many serious beam dynamics
issues in ERL that are common in ring-type accelerators.
However, there do exist significant challenges in designing
the ERLs, such as the beam break-up instability (BBU) due
to the higher order modes in RF cavities and ion trapping
in linacs.

In the MeRHIC[1], (Medium Energy eRHIC) project
(shown in Figure 1), a 3-pass ERL is proposed to accel-
erate electron beam to 4 GeV for collision with the ion
beam from the existing RHIC ring. In each pass, the elec-
tron beam is accelerated by two linacs. Each linac contains
6 cryomodule. And 6 superconducting RF cavities are in-
cluded in each cryomodule. Between cryomodules, there is
1m-drift space for a quadrupole set to be installed to con-
trol the transverse optics function. We present our optics
design of the linacs and discuss the optimization to miti-
gate the beam dynamics challenges.

OPTICAL FUNCTIONS IN LINACS

Without the knowledge of the detail information of the
cavity, we only consider the acceleration effect. In high
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gradient SRF cavity, the energy change of the electron
beam is significant and the adiabatic damping effect cannot
be neglected. Consider a linac with length L and the energy
gain is δE, an electron beam enters the linac with energy
E0. The transverse transport map of it for the coordinate
(x, px = Px/P0) is not symplectic any more, since the ref-
erence particle’s momentum P0 is not constant. Here, we
assume the electron velocity is very close to speed of light,
which implies dP/P = dE/E. The determinant of the
map should equal to E0/(E0 + δE).

A simplest map for the cavity can be built as the energy
jump between two L/2 drift space, written as:

M =
(

1 L/2
0 1

)(
1 0
0 E0

E0+δE

)(
1 L/2
0 1

)
(1)

A more accurate map can be obtained if we observe the
energy change is continuous. The map is directly derived
from the solution of the differential equation:

dpx

ds
=

kE

E0 + kEs
(2)

where kE = dE/ds is the energy change slope in Linac. If
we define LE = E0/kE , the map has a simple form as:

M =
(

1 LE log LE+L
LE

0 L
L+LE

)
(3)

When the LE approaches infinity, Eq 3 reduces to a map
of drift space with length L, which corresponds to the ultra
relativistic case so that the energy gain in linac is negligible
comparing with the beam energy. Also the equation 3 is
the special case of Ref when all details of RF cavity are
ignored.

With these non-symplectic maps, we need to determine
optical function (β and α functions) inside the linac and
match to those in the arcs. By defining a reference momen-
tum Pr, we can transform to a new coordinate (x, pxr =
Px/Pr), in which the map returns to a symplectic one.

(
x
px

)
E=Ei

=

(
1 0
0 (γβ)r

(γβ)i

)(
x
pxr

)
(4)

the subscript i refers to a specific energy in linac.
In the above equation, the beam velocity β = v/c and

Lorentz factor γ are grouped together to avoid confusion
with optics functions. And the map changes to:

M̃ =

(
1 0
0 (γβ)2

(γβ)r

)
·M ·

(
1 0
0 (γβ)r

(γβ)1

)
(5)
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Figure 1: Layout of MeRHIC. The red lines represent the energy recovery paths. There are 3 passes that vertically overlay
with each other for different energies.

where the subscript 1, 2 and r represent the momentum
at specific position 1 and 2 and the reference momentum,
which can be chosen arbitrarily. Obviously, the determi-
nant of M̃ is unity.

We can rewrite M̃ in norm form which transform the
betatron oscillation to a pure rotation R with the phase ad-
vance as the rotation angle:

M̃ =

⎛
⎝

√
β̃2 0

− α̃2√
β̃2

1√
β̃2

⎞
⎠R

⎛
⎝

1√
β̃1

0

α̃1√
β̃1

√
β̃1

⎞
⎠ (6)

Here we defined the pseudo beta and alpha functions with
tilde above the symbols. It is starghtforward to prove that
they link with the normal ones at energyE i as:

β̃E=Ei = β
(γβ)r

(γβ)i

α̃E=Ei = α
(7)

It is worthwhile to note that the phase advance does not
change due to this transformation. With the norm form we
can easily calculate the optics functions and phase advance
at any position if we know the knowledge of the following:
map between the initial point to this position, the optics
functions at initial point and the energies of both positions.

PHILOSOPHY OF LINAC DESIGN

There is larger amount of parameters that can be opti-
mized to achieve the desired optics functions in linac. An
uncompleted list includes the transfer map of the energy
recovery paths, the configuration of the focusing magnets
between linacs and the strength of focusing quadrupoles. In
MeRHIC, over 30 parameters can be changed if necessary.
To optimize them in one time needs extensive computation
power and the result usually does not have clear realistic
meanings.

To simplify the process, we impose additional limita-
tions on the parameters. First we choose doublet as the
focusing magnets between linacs and fix the length of each

quadrupole because here only the integrated field is im-
portant. Second, only two configurations of the doublet
strength are considered. One is the constant gradient case,
in which all quadrupoles have same strength, although the
beam experiences weaker focusing when the energy in-
creases in linac; the other is alternate gradient case, in
which the strength is proportional to the beam energy at
the quadrupole position in the lowest energy pass. In two-
linac layout as MeRHIC, the doublet strength increases in
linac 1 and decreases in linac 2. This gradient configura-
tion has more natural meaning than other alternate gradient
because the beam experiences same focusing force in its
lowest energy stage.

We use a transfer maps to represent the energy recovery
paths that connect one linac exit to the next linac entrance.
For one transverse direction, a symplectic map has 3 inde-
pendent variables. A simplification method is to make the
map as simple focusing map with focal length f .

MA =
(

1 0
1/f 1

)
(8)

This map doesnot change the β function but only the α
function by β/f . Therefore the focal length f , or the α
function at the entrance of the next linac can be adjusted to
minimize the average β function as:

∂β̄(βi = β0, αi)
∂αi

= 0 (9)

Here we minimize the average β function because the small
values is favorable to many beam dynamics issues includ-
ing beam break-up and ion trapping effects. Depending on
different optimization goal, we can use other functions in
above equation if the they are functions of α.

In this discussion, the whole pass is symmetric between
the acceleration and deceleration stage, as shown in Figure
2. Starting from the highest energy, we can calculate each
focal length to optimize the beta function in the next linac.

Not breaking the symmetry of acceleraton and decelera-
tion stage, we can choose a more general form for the arc.
The transfer map of a symmetric arc gives,
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Figure 2: The β function of horizontal direction in all 12
linac passes. All arcs are considered as map and repre-
sented by vertical grid lines. The red line correponds to the
constant gradient doublet and the average β function

(
β̄
)

is
minimized. The blue one is for alternate gradient doublet
and the β̄ + σβ is minimize.

MA =
(

d
(
d2 − 1

)
b

1/b d

)
(10)

or its transpose. The parameter d and b can be choosen
arbitrarily. The benefit we can get from expanding the one
variable matrix to MA is that both β and α functions can
be changed simultaneously. Therefore, each energy pass
of both linacs can be optimized seperately. If the optics
function at one linac exit is (β1, α1), the values at next linac
entrance is (β2, α2),MA has the well known form as in Eq.
(6) with the phase advance as

ψ = arctan
β1 − β2

β1α2 + β2α1
(11)

For each energy pass in linac, the initial optics function
(βi, αi) is given by solving

∂f(βi, αi)
∂βi

= 0;
∂f(βi, αi)

∂αi
= 0 (12)

The above equations only need to be solved at accelera-
tion stage. The deceleration part is just the mirror symme-
try with respect to highest energy recovery path, because
the same matrix transform (β2,−α2) to (β1,−α1).

In figure 3, we show the individually optimized linac op-
tics in the accelerating stage (first 6 linacs). At grid lines,
the arcs’ transform matrix are calculated by the optics func-
tions at nearby linac ends. Comparing figure 2 and 3, we
can not see much improvement, which means the single
variable method already give good lattice. However, the 2-
variable method isolates the optimization of one linac with
others. No matter how many linacs is used in ERL, the
procedure will be the same.

A special case, where our interest is paid, is quadrupole-
free linac. Using the same example, we keep the current
gap between SRFs, but set all quadrupole as zero strength.

Figure 3: The β function of horizontal direction in 6 linac
passes (The acceleration stage). All linacs are optimized
individually. Other parameters are same as the red curve of
figure 2.

Figure 4: The β function of horizontal direction in 6 linac
passes (The acceleration stage). All linacs are optimized
individually. All quadrupole strengths are set to zero.

In figure 4, the beta function is only slight higher than
non-zero quadrupole layout, except for the lowest energy
case. The advantage of quadrupole-free layout is obvi-
ous. No cool-warm transition is needed and linac can be
more compact by reducing the space between SRFs. How-
ever, the feasibility of this scheme needs to be confirmed
by BBU simulations.

In this paper, we present our methods to design the linac
optics with optimization for different purpose. As an exam-
ple, the results for minimizing the beta function for MeR-
HIC are provided. The methods can be expanded to any
ERL linac design with arbitrary number of linacs.
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