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Abstract 
Mission critical systems at the European Organisation 

for Nuclear Research (CERN) make extensive use of 
Programmable Logic Devices (PLDs) such as Field 
Programmable Gate Arrays (FPGAs) to implement their 
safety critical functions. The dependability of these safety 
critical functions is difficult to determine using traditional 
techniques.  A robust approach is needed if PLD 
technology is to be accepted in mission critical systems. 

This paper discusses techniques which are being 
developed and employed by CERN to give confidence in 
the use of PLDs in mission critical systems, the Safe 
Machine Parameter system development is used as an 
example. 

SAFE MACHINE PARAMETERS (SMP) 
For safe operation of the Large Hadron Collider (LHC), 

several systems require machine parameters that must be 
generated and distributed around the accelerator complex 
with high dependability (safety, availability and 
reliability).  The Safe Machine Parameters (SMP) system 
is being developed to generate parameters from the 
machine and beam states, transmitting these parameters to 
the systems that require them. 

 

Figure 1: The LHC Safe Machine Parameter function. 

In realising this mission-critical function, the SMP 
system makes extensive use of PLDs.   

For 2009-10 operation of the LHC a functionally 
correct system has been realised.  

For 2011 operation of LHC a dependable system is in 
development, with particular emphasis placed on the 
implementation of the PLDs. 

OPTIMISATION TECHNIQUES 
The development and evolution of mission critical 

systems using PLDs, such as the SMP system requires 
four key areas to be thoroughly addressed during the 
system’s design cycle [1]: 

Separation of Critical from Non Critical 
The design should be made in such a way as to 

minimise the implementation of the mission-critical path, 
anything which is not critical should be separated out, and 
preferably implemented in a completely separate device.  
The non-critical implementation should have no influence 
on the critical implementation, and the critical path should 
be as simple as possible, in a device that can easily meet 
the requirements with significant spare logic cells. 

Monitoring the Critical Path 
The design should allow the critical information and 

processes to be monitored, by providing signal taps and 
real time information.  This allows the critical path 
integrity to be cross-checked during operation. 

Simulation Test-Benches and Code Coverage 
Realising the design should allow for the critical signal 

paths to be exercised using a purpose built test-bench, in 
addition, this test-bench should be written to be as 
flexible as possible, to increase the code coverage.  

Stand Alone and On-Demand Testing 
A specific hardware tester is required to ensure system 

performance in a laboratory environment.  An automated 
tester verifies that design functionality is sound after 
modifications are made, and also verifies that the 
generated hardware matches the simulated function.  

Once installed, the system critical paths should be 
testable on demand, in a safe way, in-situ.  This does not 
necessarily require changes to the hardware 
implementation, but at least the effects of testing on the 
system operation should be considered. 

SIMULATION AND CODE COVERAGE 
Hardware Description Language (HDL) code, such as 

VHDL or Verilog, is written to describe the function of 
the PLDs.  Simulation with code coverage is a 
fundamental requirement for mission-critical systems. 
Simulation with code coverage must be carried out at two 
levels of abstraction: 

• Behavioural Simulation 
• Gate-Level Simulation 

Behavioural simulation does not always give results 
which match real hardware, on the other hand gate-level 
simulation matches the hardware, but is cumbersome and 
time consuming to carry out, as it uses the final design’s 
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net-list and device specific primitives libraries. This 
makes gate-level simulation somewhat impractical 
especially during the design phase of a complex project. 

In all cases a thorough test-bench is required, which 
should wrap the Unit Under Test (UUT) inside Bus 
Functional Models (BFMs), passing stimuli to the UUT 
and recording responses.  The test-bench should evolve to 
include new conditions as the weaknesses in code-
coverage are identified.  
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Figure 2: Simulation test-bench. 

Code coverage is required in both cases, this 
encompasses numerous terms, the specific phraseology 
depends on the tools being used, but broadly speaking, 
code coverage falls into five categories [2]: 

Statement Coverage  
Statement coverage measures if and how often the 

signals and variables were assigned during the simulation.  
This is a basic measurement and the design should always 
have 100% statement coverage.  

Branch Coverage  
Branch coverage assures that all “if / case” branches 

have been executed. Empty branches can legitimately 
exist, so it is not always possible to cover branches to 
100%.  Exceptions such as this should be verified, and 
commented upon in the design code.  

Condition Coverage  
Condition coverage checks if all combinations of 

complex branch conditions were executed.  For example 
“if A = B” would have all conditions covered when all 
four combinations of A and B have been checked, 00, 01, 
10, 11.  Implementation changes may be needed to permit 
the complete condition coverage. 

Expression Coverage  
Expression coverage checks the truth table of the 

expressions which are not used in decision constructs.  It 
is possible to choose between two checking methods:  

Exhaustive Coverage – Every expression combination 
is checked. 

Focussed Expression Coverage – A sub-set of 
expression combinations are checked, giving a high 
degree of coverage, especially important if the expression 
has many inputs which would be impossible to 
exhaustively cover in a reasonable time. 

Toggle Coverage  
Toggle coverage determines if all bits of all signals 

have changed states, and is most appropriately used in 
gate-level simulations. 

HARDWARE TESTING 
Hardware testing is also required to validate the 

implementation, proving that final hardware conforms to 
specification. For this purpose a hardware tester should be 
realised.  

Hardware Tester 
The tester generates input stimulus and checks the 

response of the Device Under Test (DUT), in much the 
same way as the simulation test-bench, but this time using 
real signals, logging real results.  

The tester should be designed in such a way as to be 
able to invoke errors to verify the response of the 
hardware to these conditions. 

Embedded Logic Probes 
A useful hardware testing tool provided by device 

manufacturers is an Embedded Logic Probe (such as 
Xilinx’s ChipScope or Altera’s SignalTap). The probe is 
integrated with the design and finally programmed into 
PLD DUT. It uses device memory resources for recording 
selected internal or external signals, thus the critical 
device must have spare cells and memory, but with this 
analyser in place it is possible to record internal signals 
using a variety of trigger conditions.  A typical setup with 
an embedded logic probe is shown below. 
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Figure 3: Hardware tester. 

THE SMP RECEIVER 
The LHC SMP system is being re-designed for 2011 

operation, the first sub-system to be addressed is a 
receiver module (CISR). It is tasked with de-serialising 
raw intensity and energy data, checking the data integrity, 
and re-encoding the data. The old (2009-10) and new 
(2011) implementations are shown in Figure 4. 

Separation of Critical from Non Critical 
In both cases, two FPGAs are implemented, the first, a 

control device, is tasked with the critical function, and a 
second monitor device records and supervises the 
operation of the control device.  
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Figure 4: Old (left) vs. new (right) CISR implementation. 

Monitoring the Critical Path 
In the new implementation all non-critical elements 

were moved to the monitor device, and signal taps were 
routed to the monitor device to allow monitoring of the 
critical path operation. 

In effect there is a copy of the critical function being 
executed in the monitor device, comparators ensure that 
the two devices give the same results, logging 
calculations steps and raising an alarm if problems arise. 

It should be highlighted here that the failure of the on-
line monitoring cannot have influence on the operation of 
the safety related logic and the critical data should still be 
received and retransmitted. 

Lower Device Usage 
The primary aim of the optimization was to simplify 

the design by re-partioning critical and non-critical 
function.  Due to this re-arrangement, the control FPGA 
occupancy was significantly lowered as shown in Table 1 
below.  This has several benefits: 
• Flexibility for future design requirements. 
• Easier achievement of device timing constraints. 
• More resources can be dedicated to the embedded 

logic probe, when it is used. 

Table 1: Critical PLD Occupancy for Old vs. New Design 

 Old New Change 

Look-Up-Tables 63% 42% -21% 

Flip Flops 43% 35% -8% 

Memory 21% 0% -21% 

Simulation Test-Benches and Code Coverage 
In addition to the simplification of the hardware, the 

aim was to maintain or improve the code-coverage of the 
design. The same test-bench and the same stimulus was 
applied to both the old and new behavioural designs, 
results are shown in Table 2 opposite.   

In effect almost complete coverage of the modified 
areas of the control FPGA design was achieved, the areas 
yet to be modified result in total coverage falling 
somewhat short of 100%. 

Table 2: Critical PLD Coverage for Old vs. New Design 

 Old New Change 

Statement 91.9% 92.9% +1.0% 

Branch 87.6% 91.7% +4.1% 

Condition 81.7% 85.6% +3.9% 

Expression 79.4% 81.8% +2.4% 

CONCLUSIONS 
Methods and metrics to evaluate design improvements 

are in development, preliminary ideas have been 
discussed in this paper, with reference to a redesign of a 
sub-system of the LHC SMP controller. 

In this case, further partitioning of the mission-critical 
functionality was possible, significantly simplifying the 
HDL design whilst preserving similar levels of code-
coverage and the online monitoring capabilities.   

The receiver design still needs further improvement, the 
approaches outlined here will be further enhanced, and 
applied to the rest of the components in the receiver 
module, and ultimately of the whole SMP system. 

On-demand and stand alone testing is a key area, the 
hardware was only verified using a data generator to 
simulate working conditions, a dedicated tester is in 
development for future testing. 
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