
DEPENDABLE DESIGN USING PROGRAMMABLE LOGIC DEVICES

A. Castañeda Serra*, M. Kwiatkowski†, B. Todd‡, CERN, Geneva, Switzerland

Abstract
Mission critical systems at the European Organisation

for Nuclear Research (CERN) make extensive use of
Programmable Logic Devices (PLDs) such as Field
Programmable Gate Arrays (FPGAs) to implement their
safety critical functions. The dependability of these safety
critical functions is difficult to determine using traditional
techniques. A robust approach is needed if PLD
technology is to be accepted in mission critical systems.

This paper discusses techniques which are being
developed and employed by CERN to give confidence in
the use of PLDs in mission critical systems, the Safe
Machine Parameter system development is used as an
example.

SAFE MACHINE PARAMETERS (SMP)
For safe operation of the Large Hadron Collider (LHC),

several systems require machine parameters that must be
generated and distributed around the accelerator complex
with high dependability (safety, availability and
reliability). The Safe Machine Parameters (SMP) system
is being developed to generate parameters from the
machine and beam states, transmitting these parameters to
the systems that require them.

Figure 1: The LHC Safe Machine Parameter function.

In realising this mission-critical function, the SMP
system makes extensive use of PLDs.

For 2009-10 operation of the LHC a functionally
correct system has been realised.

For 2011 operation of LHC a dependable system is in
development, with particular emphasis placed on the
implementation of the PLDs.

OPTIMISATION TECHNIQUES
The development and evolution of mission critical

systems using PLDs, such as the SMP system requires
four key areas to be thoroughly addressed during the
system’s design cycle [1]:

Separation of Critical from Non Critical
The design should be made in such a way as to

minimise the implementation of the mission-critical path,
anything which is not critical should be separated out, and
preferably implemented in a completely separate device.
The non-critical implementation should have no influence
on the critical implementation, and the critical path should
be as simple as possible, in a device that can easily meet
the requirements with significant spare logic cells.

Monitoring the Critical Path
The design should allow the critical information and

processes to be monitored, by providing signal taps and
real time information. This allows the critical path
integrity to be cross-checked during operation.

Simulation Test-Benches and Code Coverage
Realising the design should allow for the critical signal

paths to be exercised using a purpose built test-bench, in
addition, this test-bench should be written to be as
flexible as possible, to increase the code coverage.

Stand Alone and On-Demand Testing
A specific hardware tester is required to ensure system

performance in a laboratory environment. An automated
tester verifies that design functionality is sound after
modifications are made, and also verifies that the
generated hardware matches the simulated function.

Once installed, the system critical paths should be
testable on demand, in a safe way, in-situ. This does not
necessarily require changes to the hardware
implementation, but at least the effects of testing on the
system operation should be considered.

SIMULATION AND CODE COVERAGE
Hardware Description Language (HDL) code, such as

VHDL or Verilog, is written to describe the function of
the PLDs. Simulation with code coverage is a
fundamental requirement for mission-critical systems.
Simulation with code coverage must be carried out at two
levels of abstraction:

• Behavioural Simulation
• Gate-Level Simulation

Behavioural simulation does not always give results
which match real hardware, on the other hand gate-level
simulation matches the hardware, but is cumbersome and
time consuming to carry out, as it uses the final design’s

*alejandro.castaneda.serra@cern.ch
†maciej.kwiatkowski@cern.ch
‡benjamin.todd@cern.ch

Proceedings of IPAC’10, Kyoto, Japan TUPEA026

07 Accelerator Technology

T22 Machine Protection 1381

net-list and device specific primitives libraries. This
makes gate-level simulation somewhat impractical
especially during the design phase of a complex project.

In all cases a thorough test-bench is required, which
should wrap the Unit Under Test (UUT) inside Bus
Functional Models (BFMs), passing stimuli to the UUT
and recording responses. The test-bench should evolve to
include new conditions as the weaknesses in code-
coverage are identified.

In
pu

t B
FM

O
ut

pu
t B

FM

Figure 2: Simulation test-bench.

Code coverage is required in both cases, this
encompasses numerous terms, the specific phraseology
depends on the tools being used, but broadly speaking,
code coverage falls into five categories [2]:

Statement Coverage
Statement coverage measures if and how often the

signals and variables were assigned during the simulation.
This is a basic measurement and the design should always
have 100% statement coverage.

Branch Coverage
Branch coverage assures that all “if / case” branches

have been executed. Empty branches can legitimately
exist, so it is not always possible to cover branches to
100%. Exceptions such as this should be verified, and
commented upon in the design code.

Condition Coverage
Condition coverage checks if all combinations of

complex branch conditions were executed. For example
“if A = B” would have all conditions covered when all
four combinations of A and B have been checked, 00, 01,
10, 11. Implementation changes may be needed to permit
the complete condition coverage.

Expression Coverage
Expression coverage checks the truth table of the

expressions which are not used in decision constructs. It
is possible to choose between two checking methods:

Exhaustive Coverage – Every expression combination
is checked.

Focussed Expression Coverage – A sub-set of
expression combinations are checked, giving a high
degree of coverage, especially important if the expression
has many inputs which would be impossible to
exhaustively cover in a reasonable time.

Toggle Coverage
Toggle coverage determines if all bits of all signals

have changed states, and is most appropriately used in
gate-level simulations.

HARDWARE TESTING
Hardware testing is also required to validate the

implementation, proving that final hardware conforms to
specification. For this purpose a hardware tester should be
realised.

Hardware Tester
The tester generates input stimulus and checks the

response of the Device Under Test (DUT), in much the
same way as the simulation test-bench, but this time using
real signals, logging real results.

The tester should be designed in such a way as to be
able to invoke errors to verify the response of the
hardware to these conditions.

Embedded Logic Probes
A useful hardware testing tool provided by device

manufacturers is an Embedded Logic Probe (such as
Xilinx’s ChipScope or Altera’s SignalTap). The probe is
integrated with the design and finally programmed into
PLD DUT. It uses device memory resources for recording
selected internal or external signals, thus the critical
device must have spare cells and memory, but with this
analyser in place it is possible to record internal signals
using a variety of trigger conditions. A typical setup with
an embedded logic probe is shown below.

Probe
History

Stimulus

Embedded
Logic Probe

DUT
Hardware

Response

Hardware Tester

Device
History

Figure 3: Hardware tester.

THE SMP RECEIVER
The LHC SMP system is being re-designed for 2011

operation, the first sub-system to be addressed is a
receiver module (CISR). It is tasked with de-serialising
raw intensity and energy data, checking the data integrity,
and re-encoding the data. The old (2009-10) and new
(2011) implementations are shown in Figure 4.

Separation of Critical from Non Critical
In both cases, two FPGAs are implemented, the first, a

control device, is tasked with the critical function, and a
second monitor device records and supervises the
operation of the control device.

TUPEA026 Proceedings of IPAC’10, Kyoto, Japan

1382

07 Accelerator Technology

T22 Machine Protection

VM
E

co
m

pa
ra

to
r

VM
E

Figure 4: Old (left) vs. new (right) CISR implementation.

Monitoring the Critical Path
In the new implementation all non-critical elements

were moved to the monitor device, and signal taps were
routed to the monitor device to allow monitoring of the
critical path operation.

In effect there is a copy of the critical function being
executed in the monitor device, comparators ensure that
the two devices give the same results, logging
calculations steps and raising an alarm if problems arise.

It should be highlighted here that the failure of the on-
line monitoring cannot have influence on the operation of
the safety related logic and the critical data should still be
received and retransmitted.

Lower Device Usage
The primary aim of the optimization was to simplify

the design by re-partioning critical and non-critical
function. Due to this re-arrangement, the control FPGA
occupancy was significantly lowered as shown in Table 1
below. This has several benefits:
• Flexibility for future design requirements.
• Easier achievement of device timing constraints.
• More resources can be dedicated to the embedded

logic probe, when it is used.

Table 1: Critical PLD Occupancy for Old vs. New Design

 Old New Change

Look-Up-Tables 63% 42% -21%

Flip Flops 43% 35% -8%

Memory 21% 0% -21%

Simulation Test-Benches and Code Coverage
In addition to the simplification of the hardware, the

aim was to maintain or improve the code-coverage of the
design. The same test-bench and the same stimulus was
applied to both the old and new behavioural designs,
results are shown in Table 2 opposite.

In effect almost complete coverage of the modified
areas of the control FPGA design was achieved, the areas
yet to be modified result in total coverage falling
somewhat short of 100%.

Table 2: Critical PLD Coverage for Old vs. New Design

 Old New Change

Statement 91.9% 92.9% +1.0%

Branch 87.6% 91.7% +4.1%

Condition 81.7% 85.6% +3.9%

Expression 79.4% 81.8% +2.4%

CONCLUSIONS
Methods and metrics to evaluate design improvements

are in development, preliminary ideas have been
discussed in this paper, with reference to a redesign of a
sub-system of the LHC SMP controller.

In this case, further partitioning of the mission-critical
functionality was possible, significantly simplifying the
HDL design whilst preserving similar levels of code-
coverage and the online monitoring capabilities.

The receiver design still needs further improvement, the
approaches outlined here will be further enhanced, and
applied to the rest of the components in the receiver
module, and ultimately of the whole SMP system.

On-demand and stand alone testing is a key area, the
hardware was only verified using a data generator to
simulate working conditions, a dedicated tester is in
development for future testing.

REFERENCES
[1] “International Standard IEC 61508-7”, first edition

2000-03.
[2] David Dempster, Michael Stuart, “Verification

Methodology Manual. Techniques for Verifying
HDL Designs”, ISBN 0-9538-4822-1.

Proceedings of IPAC’10, Kyoto, Japan TUPEA026

07 Accelerator Technology

T22 Machine Protection 1383

