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Abstract

We investigate the dynamics of longitudinally flat
bunches created with a second harmonic cavity in a high
energy collider. We study Landau damping in a second har-
monic cavity with analytical and numerical methods. The
latter include particle tracking and evolution of the phase
space density. The results are interpreted in the context of
possible application to the LHC.

INTRODUCTION
A possible path to a luminosity upgrade at the LHC is

through the creation of longitudinally flat bunches. They
can increase the luminosity roughly by 40% when the beam
intensities are at the beam-beam limit. Lower momentum
spread which can reduce backgrounds and make collima-
tion easier as well lower peak fields which can mitigate
electron cloud effects are other advantages. Use of a sec-
ond harmonic rf system is a frequently studied method to
create such flat bunches. Here we consider some aspects of
longitudinal dynamics of these bunches in the LHC at top
energy. First we consider intensity limits set by the loss of
Landau damping against rigid dipole oscillations. Next we
describe numerical simulations using both particle tracking
and evolution of the phase space density. These simulations
address the consequences of driving a bunch at a frequency
that corresponds to the maximum of the synchrotron fre-
quency.

RF WITH TWO HARMONICS
We choose the voltage to be of the form

V (φ) = VRF [sinφ+ k sinn(φ− φs)] (1)

where k is the ratio of the higher harmonic (=n) voltage
to the voltage of the fundamental harmonic. The energy
gain per turn of the synchronous particle is the same as if
only the fundamental harmonic cavity were present. The
potential function is U(φ) =

∫ φ

0
V (φ′)dφ′. The ratio of

the stationary bucket area in the second harmonic system
relative to that of the single harmonic system is

Abuck(k, φs = π)

Abuck(k = 0, φs = π)
=

1

2
[
√
1 + 2k +

Arcsinh(
√
2k)√

2k
]

(2)
This ratio increases monotonically with k, e.g. at k = 1/2,
the ratio is 1.15. There is no change in the bucket accep-
tance for a stationary second harmonic bucket.

Beam Distribution and Beam Induced Voltage
Consider a general binomial distribution ρ(W,φ) ∝

[Hb −H ]p where H is the Hamiltonian and Hb is its value
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at the bunch boundary. The line density is the projec-
tion on the φ axis, λ(φ) = λ0 [U(φ)− U(φ2)]

p+1/2 A
special case of this distribution is the elliptic distribution
ρ(W,φ) ∝ √

Hb −H which was first considered by Hof-
mann and Pedersen [1]. This has the special feature that
the line density is proportional to the potential. Let φ1, φ2

denote the phases at the ends of the bunch. Then the line
charge density is

λ(φ) = −Nb

f
[cosφ2 − cosφ+ (φ2 − φ) sinφs

+
k

n
(cosn(φ2 − φs)− cosn(φ− φs))] (3)

where the function f(φ1, φ2) is determined by the normal-
ization condition

∫
dφλ(φ) = Nb. For a full stationary

bucket f(0, 2π) = −2π(1 + k/2).
Assuming that the effective coupling impedance is

mostly reactive, Zeff (ω)/n = i[ω0L − g0Z0/(2βγ
2)]

where n = ω/ω0. For a circular beam of radius a in a
circular beam pipe of radius b, g = 1 + 2 ln(b/a). Includ-
ing the induced voltage, the total voltage is

Vt(φ) = V (φ) +
2πh2Ib, avIm(Zeff/n)

VRF f(φ1, φ2)
[V (φ)− V (φs)]

(4)
The relative change in the total focusing voltage is given by
the factor kt is kt = (Vt(φ)− V (φs))/(V (φ)− V (φs)) =
1 + 2πh2Ib,avIm(Zeff/n)/(VRF f(φ1, φ2)). The new po-
tential function is Ut(φ) = ktU(φ). while the net area and
synchrotron frequency are reduced by

√
kt.

LANDAU DAMPING THRESHOLD
The maximum intensity that can be accelerated is given

by the condition that the beam induced voltage reduces the
bucket area to zero.

Nb,max = − 1

eω0h2

VRF

Im(Zeff/n)
f(φT , φu) (5)

where φT , φu are the bucket endpoints. The frequency of
coherent dipole oscillations is found to be

ωc = ω0

√
h|η|
2π

eVRF

β2Es

√
g(φ1, φ2)

|f(φ1, φ2)
| (6)

where g(φ1, φ2) ≡ 1/(V 2
RF )

∫ φ2

φ1
(∂U/∂φ)2dφ. Let the

maximum synchrotron frequency ωs be ωmax
s . The con-

dition for the loss of Landau damping against rigid dipole
oscillations is that ωc ≥ ωmax

s , the threshold intensity for
this is

Nb,Landau

Nb,max
= [

f(φ1, φ2)

f(φT , φu)
− sgn(f(φ1, φ2))

f(φT , φu)

g(φ1, φ2)

(ω̄max
s )2

]

(7)
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Figure 1: The scaled line density λ/(Nb/2π) of a bunch
filling a stationary bucket with 3 values of k. The flattest
profile is at k = 1/2.
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Figure 2: Scaled synchrotron frequency ω̄s with a 2nd har-
monic rf in a stationary bucket with −1/2 < k < 1.

where sgn is the sign function. The synchrotron frequency
in the second harmonic system scaled by the frequency at
small amplitude in a single harmonic system is obtained
from

ω̄s(φb)
−1=

∫ φb

φa

dφ
√|(cosφb − cosφ)[1 + k(cosφb + cosφ)]|

(8)
Figure 2 shows the scaled synchrotron frequency ω̄ s.

When k ≤ 0, the frequency decreases monotonically with
amplitude. When k ≤ 0.5 the frequency at the center drops
with increasing k as

√
1− 2k and vanishes when k = 1/2.

For larger k, the frequency at the center is zero due to the
inner separatrix which has an unstable fixed point at π. The
frequency has a local maxima at the stable fixed points.
Another maximum exists in the range 295-320 degrees for
k > 1/2. The maximum frequency fmax

s for k = 1/2 is
17.915 Hz for LHC parameters. The inner separatrix also
leads to a sharp cusp in the frequency at a phase amplitude
where the inner separatrix crosses the phase axis.

We now calculate the threshold at which Landau damp-
ing is lost in the LHC assuming Zind/n = 0.1 Ohms. The
left figure in Fig 3 shows the coherent and maximum inco-
herent synchrotron frequencies including the effect of the
inductive impedance and space charge as a function of the
voltage ratio k with bunch intensity Nb = 1011. The maxi-
mum incoherent frequency is above the coherent frequency
except in the range 0.55 < k < 0.67. showing that Landau
damping would be lost at this intensity and these k val-
ues. The right plot in Fig 3 shows the threshold intensity at
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Figure 3: Left: Maximum incoherent and coherent fre-
quency vs the voltage ratio k for nominal LHC parameters.
Right: Intensity at which Landau damping is lost vs k at
different emittances.

which Landau damping is lost as a function of k for differ-
ent emittances. The threshold is above the design intensity
of 1011 until k = 0.54 but Landau damping is lost even at
zero intensity when 0.56 ≤ k ≤ 0.67. At k = 0.5 and
εL = 3 ev-sec, the threshold is 3.6×1011 which is beyond
design intensities at the LHC.

NUMERICAL SIMULATIONS
Experiments in the SPS with a fourth harmonic rf sys-

tem showed a strong coherent response in the beam trans-
fer function at a frequency corresponding to f max

s [2]. We
consider the beam response to an external forced oscillating
at this frequency. We use two different simulation methods:
a) particle tracking with the code ESME [3], b) evolution
of the density with a code developed for this purpose. The
simulations reported here were done with k = 0.5.

ESME Simulations
The multi-particle longitudinal beam dynamics code

ESME [3] is used. The bucket is populated according to the
Hoffman-Pedersen distribution with about 35,000 macro-
particles. The impedance and the space charge forces are
turned on adiabatically and an additional 80 synchrotron
periods are allowed to reach equilibrium. Next an external
rf drive at a frequency= 17.915 Hz and 0.1 MV amplitude is
turned on. This amplitude may be too large but it is about
the same as the induced voltage at the bunch edges. The
bunch evolution is monitored for the next 60 seconds.

The centroid is observed to oscillate (see Fig 4) at the
drive frequency but the amplitude modulates at a beat fre-
quency equal to the difference in frequencies between the
drive and the coherent oscillation. From the beat frequency
(0.319 Hz), we find the coherent frequency in this case to
be 17.606 Hz compared with the estimate of 17.876 Hz us-
ing Eq (6). This small discrepancy (1.5%) can however
affect the prediction of when Landau damping may be lost.
The rms emittance growth corresponding to three different
bunch lengths are also shown in Figure 4. The emittance
increase is largest for the bunch (1.01 eV-sec) whose phase
extent just matches the phase location (297 degrees) of
ωmax
s . The increase is smaller for the longer bunch which

extends up to 330 degrees. After reaching a maximum, the
emittance oscillates with a frequency equal to twice the
beat frequency of the centroid oscillations before settling

Proceedings of IPAC’10, Kyoto, Japan TUPD067

05 Beam Dynamics and Electromagnetic Fields

D05 Instabilities - Processes, Impedances, Countermeasures 2079



-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 5  5.5  6  6.5  7  7.5  8  8.5  9  9.5  10

T
he

ta
ba

r 
(d

eg
)

Time [secs]

1.01 eVs
1.65 eVs

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 4  6  8  10  12  14  16  18  20

R
M

S-
E

m
it/

R
M

S-
E

m
it-

In
it

Time [secs]

1.65 eVs
1.01 eVs
0.53 eVs

Figure 4: ESME simulations when the beam is driven at a
frequency fmax

s . Left: Centroid motion for two different
emittances. Note the beating motion in both cases. Right:
Emittance growth (normalized) for different emittances.

Figure 5: Mountain range view of the line density. Top:
ESME simulation with εL = 1.01eV-sec. Bottom: Vlasov
simulation for a longer bunch. Note the development of
shoulders in both profiles.

down to an equilibrium value. Neither growth nor oscil-
lations are seen for the shortest bunch length whose phase
extent (270 degrees) does not reach the location of ωmax

s .
Figure 5 shows a mountain range plot of the bunch profile
for the bunch with largest emittance growth. A shoulder
develops in the profile, similar to that seen in the SPS ex-
periments [2].

Vlasov Simulations
Particle tracking, while conceptually simple, does not re-

solve well the tails of the beam distribution where there are
few particles. An alternative is to adopt the Eulerian point
of view, i.e. focus on specific locations in phase space as
time evolves or equivalently solve the Vlasov equation. In

Figure 6: Vlasov simulation of the phase space density for a
bunch with εL = 1 ev-sec and phase extent to 295 degrees..
Left: initial, Right: final distribution after 45 secs develops
a halo.

contrast to particle tracking, all locations in phase space are
monitored in time and treated on equal footing. Rather than
solving the Vlasov partial differential equation, we fol-
low the approach in reference [4] where a semi-Lagrangian
technique is used. Symplectic maps are used to ensure
long-term preservation of the phase space density. The
density distribution is interpolated on a 2D regular rectan-
gular grid using C′ third order Lagrange polynomials. At
each step in time, the density is updated using the prescrip-
tion F (q, p, tn) = F (M−1(q, p, tn−1)) where M−1 rep-
resents the inverse of the forward map from tn−1 to tn.
The maps are implemented as localized kicks and are ap-
plied every turn. Currently, the code can model arbitrary
rf cavity waveforms, linear or non linear phase slippage as
well as longitudinal impedances and space charge effects.
In a typical simulation over 0.5× 106 turns, on a grid with
104 third order cells, we observe less than 10−3 variation
in the integral of the phase space density.

Results from this Vlasov code are similar to those from
ESME. Centroid oscillations show the same beating period
and emittance growth is also about the same. Fig 5 shows
the mountain range profile of a bunch. Fig 6 shows an ex-
ample of the phase space distribution at the start and end of
about 1000 synchrotron periods. Here the bunch extends to
the location of ωmax

s and develops a halo due to the excita-
tion. Bunches longer than 340 degrees or shorter than 270
degrees experience very little emittance growth.

To summarize, we have found that voltage ratios be-
tween 0.55-0.68 may not be suitable if Landau damping
is to be preserved in a second harmonic cavity. Numer-
ical simulations have shown that bunches with phase ex-
tent shorter or much longer than the location of the max-
imum synchrotron frequency experience very little emit-
tance growth when driven at this frequency.

We thank Jim MacLachlan for help with ESME.
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