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ABCI-BASED ANALYTICAL MODEL FOR CALCULATING THE TRANS-
VERSE KICK FACTOR IN AXI-SYMMETRIC STEP-OUT TRANSITION  

M. El Ashmawy*, G. D’Auria, Sincrotrone Trieste ELETTRA, Italy.  

Abstract 
Step-out transition is one of the most frequent 

component, commonly used on the new generation light 
source facilities where very short and dense electron 
bunches are considered. The numerical calculation of the 
short-range wake at this type of transition requires a 
spatial mesh size equal to a fraction of bunch length. This 
calculation becomes for a very short bunch, e.g.  σ = 25 
μm, very time consuming due to the large number of 
mesh points required. On the other hand, the available 
analytical models that calculate the transverse wake field 
are applicable only on a narrow range of bunch lengths. 
We developed an ABCI-based analytical model that can 
calculate accurately the kick factor. The advantage of this 
model is quick, accurate and covers wide range of rms 
bunch lengths (up to σ = 1000 μm). The model also 
covers a wide range of beam pipe ratio b/a. 

INTRODUCTION 
Stupakov G. and Bane K.L. [1,2] studied the wakes and 

impedances of any non-axisymmetric transitions of any 
arbitrary shape using the optical approximation. As a 
special case of their studies, the transverse impedance of 
the step-out transition is given by: 
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Since the transverse wake function is related to the 
transverse impedance through inverse Fourier transform, 
then the transverse wake function is given by step 
function: 
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The transverse wake is then simply obtained by the 
convolution of the charge density of Gaussian distribution 
with the wake function which implies that the transverse 
wake has a cumulative distribution shape at any bunch 
length and the kick factor, which is given by the integral 
of the wakefield weighted by the charge density 
distribution, is then independent of bunch length or 
frequency and it has a fixed value for all bunch lengths. 
This means, as indicated also in [2], that the optical model 
breaks down at long bunches. As an example, the 
transverse wake of step-out transition with beam pipe 
radii a = 5 mm and b = 13.5 mm is evaluated numerically 
by ABCI code [3] and analytically using eq. 2 at different 
Gaussian bunch lengths as shown in Fig.1. 

In this paper, we studied the transverse wakes of step-
out transition of an arbitrary beam pipe ratio using ABCI 
code to find an analytical model for calculating the kick 
factor based on ABCI code rather than the existing 

analytical model that is applied at very short bunches 
only. The main two advantages of this model is: a) 
accurately evaluating the kick factor on wide range of 
bunch lengths and beam pipe ratio, b) quick alternative 
tool of the time domain codes that consume too much 
time in calculating the kick factor due to high mesh points 
needed at very short bunch lengths and large step-out 
pipes radii.  
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Figure1: transverse wakes of step-out transition as a 
function of bunch length using analytical optical 
approximation (left) and ABCI code (right). 

MODEL APPAROACH 
We run ABCI at a different input pipe radii starting 

from a = 2.5 mm and up to 10 mm. For each value of the 
smallest radius a we changed the other beam pipe radius 
b. For each value of b we plot the kick factor as a function 
of the rms bunch length σ. In this context, the smallest 
value of b was 4 mm at a= 2.5 mm and the greatest value 
was 72 mm at a =10 mm.  For all simulations, we noticed 
that the kick factor has always a linear relationship with 
respect the rms bunch length (σ) whatever the beam pipe 
ratio (a/b) is. Fig.2 represent an example of tremendous 
number of simulation at fixed beam pipe radius a = 3.5 
mm. The figure shows very well the aforementioned 
linear relationship and the linear fit of different kick 
factors at different beam pipe radius b.  

 
Figure 2: kick factor of step-out transition at input radius 
a = 3.5 mm as a function of rms bunch length and 
different output pipe radius b shown in brackets. 
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  It is worthwhile to mention that the linear relationship of 
the kick factor as a function of the bunch length is 
depending mainly on the mesh resolution where the mesh 
size should be small enough to avoid numerical 
dispersion especially at very short bunches. Coarse mesh 
size will make kick factor at very short bunches almost 
independent of bunch length. On the other hand the fine 
mesh size is mandatory since the excited frequency 
spectrum depends strongly on the mesh size. For that 
reason we take the mesh size to be σ/10 and σ/20 in 
vertical and longitudinal directions respectively.  

The kick factors shown in Fig. 2 are fitted to the linear 
formula: 

 K┴ = A0 (a,b) σ + B0(a,b)                      (3) 

Where the fitting parameters A0(a,b), B0(a,b) are 
function of step-out transition radii a,b. Table 1 represents 
their values at different beam pipe radius b while Fig. 3 
shows their plot. These fitting parameters are then fitted 
to the formulae (4) and (5) and the fitted values are shown 
by dashed lines in Fig. 3: 
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Table 1: Fitting parameters A0(a,b), B0(a,b) 
b (cm) A0(a,b) B0(a,b) 
0.56 -128576 447.77 
0.7 -118558 551.49 

0.84 -113091 607.84 
0.98 -109818 641.82 
1.12 -107661 663.85 
1.26 -106176 678.97 
1.4 -105152 689.77 

1.68 -103818 703.9 
1.96 -102976 712.37 
2.24 -102430 717.87 
2.52 -102097 721.67 

 
Figure 3: Fitting parameters A0(a,b), B0(a,b) (circles) and 
their fittings (dashed lines) as a function of output radius 
b when the input radius a = 3.5 mm.  

As noticed, each of the fitting parameters A0(a,b), 
B0(a,b) have their own new 5 fittings parameters which 
are function in the pipe radius a only. The same procedure 
has been repeated at different values of pipe radius a to 

obtain the fitting parameters A0(a,b), B0(a,b)at each a then 
find their subsequent fitting parameters A1(a)-A5(a) and 
B1(a)-B5(a). Table 2 represents such fitting parameters at 
different values of a while Fig. 4 shows the fitting 
parameters A1(a)-A5(a) and B1(a)-B5(a) with their fittings 
as a function of pipe radius a. Equations from (6.1) to 
(6.10) represent the final mathematical formulation of the 
fitting parameters A1(a)-A5(a) and B1(a)-B5(a). 

Table 2: Fitting parameters A1(a): A5(a) and B1(a):B5(a) at 
different values of pipe radius a. 

a (mm) A1(a) A2(a) A3(a) A4(a) A5(a) 
2.5 -577100 0.15 -57890 0.5661 -283400
3.5 -306032 0.1769 -35726.7 0.60176 -101571
5 -153195 0.21326 -19742.1 0.72849 -33630.1

7.5 -54214.1 0.29982 -7026.01 1.03489 -9745 
10 -13517.8 0.57124 -1183.31 2.18164 -4042.89
 

a (mm) B1(a) B2(a) B3(a) B4(a) B5(a) 
2.5 -561.92 0.48491 -4686.7 0.1447 1428.9 
3.5 -371.44 0.60242 -3245.3 0.17513 727.05 
5 -218.38 0.7783 -1770.2 0.23296 354.48 

7.5 -98 1.15 -815.7 0.348 157.4 
10 -46.432 1.702 -403.68 0.49456 88.817  
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Figure 4: fitting parameters A1(a):A5(a) (red circles) and 
B1(a): B5(a) (blue circles) with their fittings (solid lines) 
as a function of pipe radius a. 
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( ) 43321.05409.16
1 10792.110628.810386.7 ×+×−×−= ×−×− aa eeaA  (6.1) 

( ) aa eeaA ×−× ×+= 8469.05114.0
2 10244.4118.0  (6.2) 

( ) 55309.05002425.05
3 10618.510767.11048.5 ×−×−×= ×−×− aa eeaA  (6.3) 

( ) aa eeaA ×−× ×+= 8626.04102.0
4 10784.14281.0  (6.4) 

( ) aa eeaA ×−×− ×−×−= 3747.05342.16
5 10661.110246.6  (6.5) 

( ) aa eeaB ×−×− ×−×−= 3013.069765.03
1 108.93510394.1  (6.6) 

( ) aa eeaB ×−× −= 88884.01556.0
2 4045.03589.0  (6.7) 

( ) 6.20310986.110054.1 4099.03409.04
3 −×−−= ×−×− aa eeaB  (6.8) 

( ) aa eeaB ×× −= 06093.007243.0
4 488.1566.1  (6.9) 

( ) 009.2
5 9002 −= aaB  (6.10) 

MODEL VALIDITY 
Now we have all parameters needed to calculate the kick 

factor, for example for any value of pipe radius a the 
fitting parameters A1(a)-A5(a) and B1(a)-B5(a) are 
evaluated using equations from (6.1) to (6.10) then 
introducing pipe radius b in equations 4 and 5 we get the  
fittings parameters A0(a,b), B0(a,b) which can be used in 
turn in Eq. 3 to find the kick factor. To check the model 
validity we run ABCI code at different bunch lengths and 
pipe ratios other than those already used in model 
formulation. Fig. 5 shows ABCI kick factors of different 
4 step-out transitions in comparison with those obtained 
by the model we just derived. Apparently, the model is in 
excellent agreement with ABCI data.  
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Figure 5:  Kick factor of four step-out transitions with 
different pipe radii ratio. Scattered data are.  

WORK IN PROGRESS 
Since the step-out transition is a special case of taper-out 

transition with tapering angle θ =900, then we decided to 
use the same approach described in this paper to extend 

the model to cover the taper-out transition of any arbitrary 
tapering angle of the wall connects the two beam pipes. 
The model will also include the wake potential plotting.  

CONCLUSION 
Kick factor of long bunches passing a step-out transition 

can not be calculated accurately using the current 
available analytical model since it is applicable only at 
very short bunches where the optical approximation is 
applied. Even at short bunches the available codes take 
too much time in calculation process. Using ABCI code 
we derived an analytical model that overcame the 
aforementioned two shortcomings. The model calculates 
accurately and very quickly the kick factor of any step-out 
transition of arbitrary pipes radii ratio and it is operating 
perfectly on a wide range of bunch length starting from 
point charge (i.e. σ = 0 μm) and up to σ = 1000 μm. The 
reader that wants to check the validity of this model 
should consider the mesh size mentioned in the second 
section. We believe that this model in its final form will 
save too much time wasted in transverse wake calculation 
of one of the most frequently used components in light 
source facilities i.e. step/taper out transitions.  
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