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Abstract

In the development of powerful negative ion sources for
neutral beam injectors, the modelling of extraction of neg-
ative ions is fundamentally complicated by the existence of
coextracted electrons, and the practically necessary trans-
verse magnetic field. After recalling that for positive ion
extraction the transition from presheath to sheath happens
near Bohm speed, as definitely proved by kinetic models in
agreement with simpler fluid models, a kinetic model for
electron transport is solved for in a large class of potentials,
including examples of interest. Relations to usual mobil-
ity coefficient and equilibrium density are found. Kinetic
concepts are also included in a new fluid model, showing
some results for electron extraction from an e - H+ plasma,
with a magnetic field Bx and with an electron collision fre-
quency dependent from electron speed. Extraction voltage
increases with |Bx| at constant extracted current jz.

INTRODUCTION

The Negative Ion Sources (NIS) used, for example, for
multiturn synchrotron injection[1] or in Neutral Beam In-
jectors for fusion application[2], are based on a two stage
plasma: gas (H2 or D2) is dissociated or ionized in a driver
region (electron temperature Te ≥ 4 eV), while negative
ions propagates in a cooler plasma region (temperature
T0 ∼= 1 eV) near extraction. A transverse magnetic field
(called filter, in x or y direction when z is the beam axis)
is necessary in the latter region to reduce electron flow to-
ward extraction; another transverse magnetic field system
in the 1st acceleration gap is useful to deflect and dump the
coextracted electrons, before they are accelerated over 10
keV; D− extraction voltage ranges from 60 kV sources to
the 1 MV planned for NBI system. From electron orbits, it
is evident that plasma collisions are responsible for coex-
tracted electrons, and this paper attempts a step towards the
clarification of the transition from a collisional plasma to a
collisionless ray tracing, by discussing some newly found
solutions to the integrodifferential transport equations.

In singly charged positive ion sources, the study of beam
extraction was greatly simplified by the absence of mag-
netic field; consider only two charge species, say e− and
H+; so both fluid and kinetic models have success[3]. The
vast majority of models is one dimensional (1D), that is
any variation in space coordinates x and y is ignored. As an
example of kinetic model without collision, the integrod-
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ifferential plasma equation [4] for the adimensional vari-
able u = −eφ/T0 with φ the electric potential was solved
numerically[5], explaining the transition between two re-
gions: a quasineutral plasma (named presheath) and a pos-
itively charged sheath, where the ion velocity vz(z) be-
comes approximately equal for all ions and greater than
cs =

√
T0/mH and the ion density NH+ becomes

NH+ = − jH+/(evz) vz
∼= cs

√
2u−2up (1)

here j is the extracted current density and u p a plasma po-
tential. Electron density Ne exponentially decreases in the
sheath region; to fix ideas, sheath ends and ion beam begins
when Ne < 0.01NH+ , that is, fully negligible; sheath thick-
ness is very small, of the order of ten Debye lengths λD. In
fluid models (much simpler to solve), eq. 1 is assumed for
the sheath and beam region, while N +

H = Ne = N0 exp(−u)
is usually assumed in the presheath; in fact, we have two
different fluid models. Presheath model breaks when the
ion fluid velocity < vz > reaches the speed of a sonic wave,
known as Bohm speed

√
(Te +TH)/mH

∼= cs. As regards to
the beam fluid model, it requires u > u p + 1

2 for stability, so
that the two models do not overlap and do not contradict,
as discussed in a vast literature[3]. Most of the ion extrac-
tion simulation codes were implicitly based on the concept
of quasi neutrality in the plasma region and of ion Bohm
speed.

In negative ion extraction, we have to consider elec-
tron speed, magnetic fields and collisions and additional
charged species (H−, and in most experiment Cs+). A ki-
netic model starting from Vlasov equation with a thermal-
ized scatterer collision term was reduced to a 1D transport
equation[6] and fully solved for H− ions. Selfconsistent so-
lutions for u and a fluid transport model were also found[7].
Monte Carlo simulations are also widely used to investigate
plasma behavior, and resolution down to λD is becoming
possible with parallelized computing and variance reduc-
tion techniques[8]; some regularized sampling techniques
seems also promising.

In the next section the transport of electrons is discussed.
A sheath model is also discussed in the last section.

ELECTRON TRANSPORT

Let T0 be a fixed reference plasma temperature (that
is T0 = 1 eV) and N0 be a reference density and assume
B = x̂Bx(z), so that A = ŷAy(z). To discuss transport of
any particle a we find convenient to use scaled variables:
velocities in units of ca =

√
T0/ma, mechanical momenta
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pz in unit of maca, density in units of N0, currents in units
of qaN0ca with qa the particle charge, potential v = qaφ/T0

and vector potential a = qaAy/
√

maT0. Let ∂za = a,z be the
z-derivative of a. For electrons, ce =

√
T0/me and v = u.

It is convenient to separate the current j+ of electrons
moving in the forward direction from the absolute value j −
of the current in the backward direction, and define

ja(z) =
j+(z)+ j−(z)

2
; jh =

j+(z)− j−(z)
2

= 1
2 j (2)

Note that 2 ja is the total current impinging on a scatterer
(analogous to a neutron flux), while j is the net particle cur-
rent. With λ the mean free path and M the average current
propagation from a collision at z ′ to observation at z with-
out any other collision, by integrating Vlasov equation we
got a closed equation[6] for ja

∂ ja
∂z

+
jh
λ

= jB,z +
∫ zβ

zα

dz′

λ
e−

|z′−z|
λ ja(z′)

∂M(z,z′)
∂z

(3)

with

M = 1
2 erfc

ā 2 + 2v̄

|ā|√8
+ 1

2 e−v̄erfc
ā 2 −2v̄

|ā|√8
(4)

for ā �= 0, where ā = a(z)−a(z ′) and v̄ = v(z)−v(z′) are the
potential differences between z and z ′; moreover M(0, v̄) =
min(1,e−v̄) and jB, due to particles injected at boundaries
zα and zβ with speed not sufficient to climb v(z) and a(z),
is known and it is negligible when −zα = zβ → ∞. In a pure
scatter problem (no absorption), jh does not depends from
z. Density n+ of the forwardly directed particles is

n+(z) = nα(z)+
∫ z

zα
ds′e−|z′−z|/λN(ā, v̄) ja(z′) (5)

where nα is the known boundary term; similarly for n−;
here N(0, v̄) = c2e−v̄erfc ℜ[(−v̄)1/2] with c2 =

√
π/2 and

N(ā, v̄) =
∫ ∞

0
dpze−v̄−(p2

z /2)erfc
ā 2 − p2

z −2v̄

|ā|√8
(6)

For a constant magnetic field, we get ā = (z − z ′)/L
where L is the Larmor radius

√
meT0/e|Bx|. In the source,

ā 	 v̄ typically holds for electrons, so that M may be ap-
proximated as

M(z,z′) ∼= exp{− 1
2 [v(z)− v(z′)]} erfc

|z′ − z|√
8L

(7)

Defining jb(z) = ev(z)/2 ja(z) and mb = ev̄/2M,z we have

∂ jb
∂z

+
jhev(z)/2

λ
=

∫ zβ

zα

dz′

λ
e−

|z′−z|
λ mb(z,z′) jb(z′) (8)

mb = − 1
2v,z erfc

|z′′|
L
√

8
+ e−(z′′/L)2/8 sign(z′′)√

2πL
(9)

with z′′ = z′ − z. Most remarkably, when v,z is a rational
function of z, thanks to the mb form, the integrodifferential
eq. 8 can be converted to an ordinary differential equation

for jF (k) = F jb(z) with F the Fourier transform. For ex-
ample, with a classical barrier v = −p2z2 with p2 > 0, we
get

jh
λ

e−k2/2p2

p1/2
2

= (ik +WF
2 ) jF + p2i∂k(1−WF

1 ) jF (10)

which is exactly solvable; here

WF
1 (k) =

∫ ∞

−∞

dz′′

λ
e−

|z′′ |
λ erfc

|z′′|
L
√

8
(11)

WF
2 (k) =

∫ ∞

−∞

dz′′

λ
e−

|z′′ |
λ e−(z′′/L)2/8 sign(z′′)√

2πL
(12)

Details of solution are omitted for brevity. In the example
v(z) = v1z we also have the translational symmetry since
Ez is uniform, and Fourier transformed equation is

jh
√

2π δ(k− i
2v1) = DF(k) jF (k) (13)

with DF = λ{ik+WF
2 + 1

2v1(1−W F
1 )}. Its general solution

and inversion of F give jb(z) = ∑3
n=0 cn exp(−iknz) where

n = 0 is the inhomogeneous term, that is k0 = i
2v1 and c0 =

jh/DF( i
2 v1). The other kn are the roots of DF(k) = 0; we

are able to prove that no solution is nonzero and real and we
found 3 solutions on the imaginary axis. In detail, k 2,k3 ∼=
±i/L, so they correspond to very sharply decaying modes,
which require huge input currents to be maintained, so we
drop them here. The solution k1 happens to be of v1 order,
and can be computed from Taylor expansions W1 = W10 +
O(k2) and W2 = W21k +O(k3); we get

k1 = i
2 v1(1−W10)/(1− iW21)

W21 = −ix
√

32/π+ 8ix2e2x2
erfc(

√
2x)

W10 = 2−2x2e2x2
erfc(

√
2x) (14)

with x = L/λ. Final solution is

ja(z) =
2 jh/λ

v1(iW21 −W10)
+ c1es1z (15)

with c1 an integration constant and s1 =− 1
2v1 − ik1 = v1R1

with the ratio R1 = 1
2(W10 − iW21)/(1 − iW21). This ra-

tio is clearly the modification to Maxwell density distri-
bution in this transport problem. Moreover note that when
c1 = 0 we have an uniform plasma subjected to a constant
electric field, so that results can be compared to Fick law
(usual diffusion theory) j = −qeNeµEz with µ the mobility
coefficient (positive, non scaled, in m2/(Vs) units). Now
j = 2 jh and, thanks to eq. 5, n = n+ + n− = Rn/ j ja (in

scaled variables), where Rn/ j
∼=

√
2π is a fixed number.

We get µ = eλ[(W10− iW21)/Rn/ j]/(mece) where the square
bracket factor is due to magnetic field.

A PRESHEATH-SHEATH MODEL

To begin with, we here consider electron extraction from
a e-H+ plasma. The Poisson equation becomes

λ2
D u,zz = nH+ −ne , λD = (ε0T0/e2N0)1/2 (16)
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Figure 1: The angle − tan−1(vy/vz) vs z/λD, for j = 0.001
to 1; for each curve, z = 0 is where vz = 1 (in scaled units),
that is vz = ce. Here λD = 14µm

where n = N/N0 are scaled densities. Even if a transport
model is appropriate also for the confined protons[7], we
approximate it with nH+ = n0eu as usual, where n0 ∼= 1, and
we set up a fluid model for electrons, still approximately
retaining the effect of backward and forward currents.

In scaled units for velocity v, the motion fluid equations
for vF =< v > are

vzvz,z +(ne,z/ne) = −u,z − (vy/L)− (νm
e /ce)vz

vzvy,z = +(vz/L)− (νm
e /ce)vy (17)

where the F superscript of v is dropped as usual and the
collision frequency νm may depend on electron speed v =
|v|.

Let us assume that collision cross sections are σ = σnv−n
R

where vR is the relative velocity (and here n is an index);
n = nc ∼= 3.9 for Coulomb collision with H+; for collisions
with H2 molecules, n = 1 is a fair fit of experimental data
from 0.5 to 10 eV[9]. The collision frequency is < v Rσ >
Ns where Ns is the scatterer density, so that

νm
e ≡ kgg(v)+ kch(v) = kg +

kcnH+

(c2
s + c2

e + v2)αc
(18)

where the gas term is kg = Ngσ1 and in the Coulomb colli-
sion term kc = N0σnc with αc = (nc − 1)/2 = 1.45. From
collision data, σ1 = 1.01 × 10−13 m3/s and σncc1−nc

e =
1.25 × 10−10 m3/s. We take N0 = 3.3 × 1017 m−3 and
Ng = 7.7×1019 m−3 for a typical NIS.

Since no absorption of electrons (or ionization) is con-
sidered (as in the previous section), we do not need the
particle balance equation discussed elsewhere[7] and sim-
ply take jz as a parameter j. Note that using ne = jz/vz to
close eqs. (16-17) is incorrect, since backward and forward
directed particles sums in ne , but subtracts in jz.

To close eqs. (16-17), we need a robust relation between
ne, j and vF

z : consider a distribution f (vz) of vz with vari-
ance 1 and mean v f = vF

z , that is

f (vz) = ne exp[−(vz − v f )2/(2c2
e)]/ce

√
2π (19)

0.002 T

|Bx| = 0

0.005 T

|Bx| = 0.01 T

z / λD

u,zDλ

Figure 2: The (scaled) electric field λDu,z for j = 0.5 and
several Bx; others conditions as in fig 1, but Ng = 0.

computing n+ and j+ by integration on vz > 0, we get

n±/ j± ∼= − 1
2

{
± v f −

√
v2

f + 4

}
≡ 1/v±(v f ) (20)

which we take as the definition of v±. Rearranging, and
remembering that j+ = j− + j we get

ne =
j−

v−
+

j+

v+ = j−
√

v2
f + 4+ 1

2

{√
v2

f + 4− v f

}
j (21)

Since backscattering decrease with v f , we also estimate
j− = k j exp(−v2

f /8).
Starting conditions at z = zst must be suited to represent

a point in the quasineutral plasma. Some conditions are ob-
vious: for example n0 = 1 and u(zst) = 0, so that nH+=1;
and k j is adjusted so that ne(zst ) = 1; we also set vz(zst) = j.
Other conditions are chosen to avoid oscillations: vy(zst) =
cevz/Lνm

e and u,z = −vz[(νm
e /ce) + (ce/νm

e L2)]; in other
words, RHS of eq. 17 be zero at start.

Some result from simulation is shown in fig. 1, for
Bx = −20 G, T0 = 1 eV and several values of (scaled) j,
from 0.001 to 1; a value j = 0.4835 will correspond to a
positive ion unmagnetized sheath. The angle between elec-
tron beam and extraction field is large (as an effect of mag-
netic field), especially at extraction. An additional amount
of extraction field, proportional to the applied magnetic
field seems also necessary from fig 2.
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