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Abstract 
The Panofsky and Wenzel theorem [1] play very 

important role in accelerator physics. The well-known 
conclusion of this theorem is that in a TE mode the 
deflecting impulse imparted by the electric field always 
cancels the impulse given by the magnetic fields. In this 
presentation the Panofsky and Wenzel’s formula is 
elaborated and analyzed obtained correction terms to the 
transverse kick. As it turned out the net transverse kick for 
the TE mode is not zero but determined by a 
ponderomotive force and initial transverse speed spread. 
Possible consequences of these results are discussed. 

INTRODUCTION 
In article [1] it was been derived a relation for the net 

transverse kick experienced by a fast charge particle 
crossing a closed cavity excited in a single RF mode 
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where e is the charge of particle, z is the longitudinal 
coordinate, t is the time, 

zA⊥∇
G  is the transverse gradient 

of z-component of RF vector potential A
G

, L is the length 
of cavity, vz is the longitudinal velocity close to the speed 
of light c. Later this relation, usually referred to the 
Panofsky-Wenzel theorem, was generalized for cavity 
containing wake field induced by a driving charge [2]. 
Some reformulated versions of this theorem are given in 
[3] for study of RF asymmetry in photo-injectors. This 
theorem plays very important role in accelerator physics. 
One well-known conclusion followed from Eq.(1) is that 
in a TE mode ( 0zA = ) the net transverse kick is zero 
since the deflecting impulse imparted by the electric field 
cancels the impulse imparted by the magnetic fields.  

However, as it has been shown in [4], if Az is zero or 
small enough, the formula (1) may be not true. The fact is 
that the Panofsky-Wenzel theorem assumes in its 
derivation that the particle experiencing Lorentz force 
moves parallel to the z-axis at constant velocity 

z zv v v v⊥= + ≈G G G G . In this paper we will repeat more 
exactly the Panofsky-Wenzel’s relation, and study 
conditions, which need to take into account the transverse 
component of velocity of the particle v⊥

G
 during its transit 

time through the cavity. We will also discuss possible 
consequences of such consideration  

DERIVING CORRECTION TERMS 
Following to Ref. [4], the equation of motion of the 

particle in terms of a vector potential is given as 
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where dz=vzdt. Using the following expressions 

( ) ( )v v vA= A A×∇× ∇ − ∇
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G G GGG , and 

expressing the particle velocity as v = v vz z zp p⊥+G G G , 
(where p⊥

G  and pz are the transverse and longitudinal 
momentums, respectively) we can write the equation for 
transverse momentum as 
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Here, it should be noted that, as rule, the last term in RHS 
of Eq.(3) is neglected due to smallness of the absolute 
value of transverse velocity with respect to longitudinal 
one ( v v 1z zp p⊥ ⊥= � ). This is justified if the 
inequality is satisfied  

 v vz zA A⊥ ⊥

GG �    (4) 

However, in the case of the TE mode Az=0 the last 
inequality is violated. Therefore, in this case and in more 
general one, when zv vzA A⊥ ⊥

GG∼ , the transverse 
momentum of the particle should be taken into account in 
RHS of Eq.(3).  

Further, integrating Eq.(3) we obtain the dependence of 
the transverse momentum on a coordinate z 
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where it is assumed that 0A⊥ =
G

 at z=0 and z=L (the 
cavity end walls are normal the z-diraction or the path of 
the particle begins and ends in a field-free region), 0,p ⊥

G is 
the initial transverse momentum, r⊥

G  is the transverse 
coordinate of the charge. Due to the small 
parameter 1zp p⊥ � , the integral equation Eq.(5) may be 
solved by the successive approximations. Therefore we 
expand it into series on the small parameter  
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Here it is defined rδ ⊥
G

 as ( )
0

z

zr p p dzδ ⊥ ⊥= ∫
G G  and 

assumed that ( )r A Aδ ⊥ ⊥⋅∇
G GGG � , 0,r ⊥

G
is the initial 

transverse coordinate of the charge.  
Then from Eq.(6) we find the zero order approximation 

of the transverse momentum as function of z-coordinate  

 

( ) ( ) ( )

( )

0
0, 0 v

0 v
0

, ,

, , .

z

z

t z

z

z t z

p z p eA r z t

e A r z t dz

⊥ ⊥ ⊥ ⊥ =

⊥ ⊥ =

= −

+ ∇∫

GG G G

G G
  (7) 

We see that at z=L the zero order approximation Eq.(7) 
reduces to the Panofsky-Wenzel formula (1). Substituting 
Eq.(7) into Eq.(6) we can obtain the transverse 
momentum of the particle with the accuracy of the first 
order approximation in the form 
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where ( )
v

, ,
zt z

A A r z t⊥ =
≡
G G G .  

From the Eq.(8) we see that in the case of exciting a TE 
mode 0zA =

G
 the net transverse kick imparted to the 

particle, when it leaves cavity, is  
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As seen from the Eq.(9), even if 0, 0p ⊥ =G  the 
ponderomotive force, which is square on the transverse 
component of vector potential, ensures the non-zero 
transverse momentum imparted to the particle.  

POSSIBLE PHYSICAL EFFECTS 
Let us discuss possible consequences of proposed 

above consideration. 

FEL and Compton Sources  
Let us consider the combined vector potential 

w rA = A A⊥ ⊥ ⊥+
G G G

of the wiggler or laser pulse, in a case of 

the Compton source, wA ⊥

G
, and the radiation fields rA ⊥

G
. 

Using Eq.(9) and neglecting initial transverse 
momentum 0, 0p ⊥ =G  we can write the transverse particle 
speed as  
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One can see that the ponderomotive force results in 
transverse drift velocity of beam particles (the second 
term of Eq.(10)) in direction from the of the maximum-
field-density area that can lead to a beam transverse 
widening.  

The consideration of the initial velocity spread 0,v 0⊥ ≠G  
results in the correction term to the electron energy 
equation in the FEL theory (for example see [5]) 
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where γ is the Lorentz factor. The second new term in 
Eq.(11) is of ponderomotive type as well as the first one, 
and can impact on lasing. The corresponding corrections 
should be taken into account in the 3D wave equation of 
the self-consistent FEL theory through the transverse 
electron current density, which can be written as 
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where i is the index of a particle. The second terms of 
Eq.(12) has resonant character as well as the conventional 
first one, and can impact on lasing.  

RF Asymmetry in Photo-injectors  
Excitation of non-resonant axial-asymmetrical modes is 

source of RF asymmetry in photo-injectors with axial-
symmetrical geometry. In generally, these non-resonant 
modes are the hybrid modes (HEM). However, the 
components of TM-like modes ( 0zA ≠ ) dominate in the 
basic volume of the conventional photo-injector cavities 
but the components of the TE-like ones ( 0A⊥ ≠

G ) is 
excited in the aperture between RF cavities, and in a beam 
pipe close to the RF cavity. Therefore, to estimate 
contribution of the RF asymmetry to transverse 
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momentum of relativistic particles of a beam, we can 
apply Eq. (8)  
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(13) 
where L is the total length of the photo-injectors with the 
beam pipe where 0A ≠

G
. 

Conception of TE Mode Deflector 
The Eq.(9) shows that the transverse momentum 

imparted to the particle by a TE mode dependences on the 
initial transverse momentum. That may point to ability to 
measure phase volume of a beam by using a TE mode 
deflector. Let us rewrite Eq.(9) in components as  
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For the case 0, 0xx yya a= = , the solution of the 
equation set (14) is 
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For a case of ultrarelativistic particles, (vz=c, γ→∞) 
Eqs.(16) can be simplified  
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    (17) 
Here the transverse kick (Δpx, Δpy) is expressed through a 
beam deflecting from axis (Δx= x-x0, Δy=y-y0) in a drift 
tube of length l which is stationed after the cavity, 
Δpx=m0cγΔx/l Δpy=m0cγΔy/l, m0 is the rest mass, (x0, y0) 
and (x, y) are the transverse coordinates of a particle at the 
entry of the cavity and the drift tube exit, correspondently. 

More detailed consideration of this method of beam 
phase volume measurement with using a rectangular 
cavity as a TE mode deflector is given in Ref. [4]. 

Wake Potential 
Using the approach developed above we consider wake 

fields ( ,E B
G G

) in terms of vector and scalar potentials ,A Φ
G
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excited by point charge q traversing the cavity at velocity 
z zv v v , v c⊥= + ≈G G G . Let a test charge e follows with the 

same velocity at distance s from the exciting point-charge 
q. The equation for the kick experienced by the test 
particle in the wake field may be given  
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Integrating Eq.(19) over (0, z), then, expanding pG  into 
series on the small parameter 1zp p⊥ � , we find the 
zero order transverse momentum as function of z  
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(20) 
Further for simplicity we assume that the path of the 

particle begins and ends in a field-free region, 
( ) ( )0 0A z A z L= = = =
G G . Substituting Eq.(20) into Eq.(19), 

and taking into account the definition [2], we obtain the 
wake potential with the correction terms 
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where U is the wake correction  
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Substituting Eq.(20) into Eq.(22) we obtain the wake 
potential correction in the form 
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As seen from the Eq.(23) two first correction terms to the 
wake potential are proportional to γ−1, whereas the 
modern wake theory [2] gives the correction terms which 
are proportional to γ−2. 
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