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Abstract

A scaling law for the time-dependence of the dynamic
aperture, i.e., the region of phase space where stable mo-
tion occurs, was proposed in previous papers, about ten
years ago. The use of fundamental theorems of the theory
of dynamical systems allowed showing that the dynamic
aperture has a logarithmic dependence on time. In this pa-
per this result, proved by mean of numerical simulations,
is used as a basis for deriving a scaling law for the inten-
sity evolution in a storage ring. The proposed scaling law is
also tested against experimental data showing a remarkable
agreement.

INTRODUCTION

In spite of the many efforts (see, e.g., Ref. [1]), a link
between the beam lifetime and the value of the dynamic
aperture for a circular machine does not seem to be avail-
able, yet. So far, the strategies applied aimed at finding the
appropriate diffusive model and to derive from this the dif-
fusion constant, and then the law of time-variation of the
beam intensity.

Differently from the standard approach, in this paper a
proposal is made to use a scaling law for the dynamic aper-
ture as a function of the number of turns N found in the
past [3-6] in view of deriving an expression for the time
evolution of the beam intensity. Such a model should be
valid whenever non-linear effects are driving the particles’
motion. A typical example of the time behaviour of the
dynamic aperture D(N) is shown in Fig. 1.

Figure 1: Dependence of the dynamic aperture vs. N for
a simple model of nonlinear dynamical system (left, from
Ref. [3]) and for a 4D model of the LHC machine (right,
from Ref. [5]). The stars represent the prediction of the
dynamic aperture by means of Lyapunov exponent.

Assuming a polar grid in normalised phase space

x = r cos θ y = r sin θ with 0 < θ < π/2, (1)

if r(θ;N) stands for the last stable amplitude up to N turns
in the direction θ, then the dynamic aperture reads:

D(N) =
2

π

∫ π/2

0

r(θ;N) d θ ≡< r(θ;N) > . (2)

According to the results of the studies reported in Refs. [3-
6], the following scaling law holds

D(N) = D∞

(
1 +

b

[logN ]
κ

)
, (3)

where D∞ represents the asymptotic value of the ampli-
tude of the stability domain, while b and κ are additional
parameters. These three parameters can be obtained by fit-
ting the results of numerical simulations. It is worth noting
that the quantity D(N) is invariant under transformation of
the type N → Na, and b → aκ b.

The interesting point is that such a parametrisation is
compatible with the hypothesis that the phase space can be
partitioned into two regions: a central core, with r < D∞,
where KAM [6] surfaces confine the motion, thus induc-
ing a stable behaviour apart for a set of small measure
where Arnold diffusion can take place; an outer part, with
r > D∞, where chaotic motion occurs and the escape rate
to infinity is given by a Nekhoroshev-like estimate [7, 8]
such as

N(r) = N0 exp
(r∗
r

)1/κ

(4)

where N(r) is the number of turns that are estimated to be
stable for particles with initial amplitude smaller than r.

Interestingly enough, two regimes were identified [5]:

• in 4D systems the three quantities D∞, b, κ are all
positive [3, 4]. This corresponds to having a stable
region in phase space for arbitrarily long times.

• in 4D systems with tune modulation or off-momentum
dynamics it is possible to have no stable region even
for a finite number of turns [5]. This corresponds to
having the following cases:

{
D∞ > 0 κ < 0 b < 0

D∞ < 0 κ > 0 b < 0
(5)

SCALING LAW OF BEAM LIFETIME
AND LOSSES

The previous picture can be used to derive the variation
of the beam intensity due to the particle loss induced by the
dynamic aperture. If the beam distribution is assumed to
be Gaussian, then by integrating over x′ and y′ and after
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changing coordinates (so that the results are expressed in
terms of beam sigmas) according to

x = σx r cos θ y = σy r sin θ (6)

and a second integration over θ one obtains the final ex-
pression for the beam distribution:

ρ̂(r) = re−
r2

2 . (7)

By using the very definition of D(N), it is clear that the
evolution of the beam intensity I(N) can be found as

I(N)

I0
= 1−

∫ +∞

D(N)

ρ̂(r) dr = 1− e−
D2(N)

2 . (8)

Positive Dynamic Aperture

This case corresponds to the situation where all the three
parameters D∞, b, κ are positive. Under this assumption,
it is readily found that

I∞ = I0

(
1− e−

D2∞
2

)
. (9)

To define the lifetime, it is necessary to convert the expres-
sion that rules the variation of the intensity into a pure ex-
ponential decay, such as:

I(N) = I0 e
−N/τ + I∞. (10)

By manipulating Eq. (8) it is found

τ = − N

log
[
e−

D2∞
2 − e−

D2(N)
2

] . (11)

It is immediately seen that the lifetime τ is indeed a func-
tion of N and τ(N) → ∞ as N → ∞, which is a di-
rect consequence of the fact that a fully stable region exists.
Hence, in this scenario the lifetime does not seem to be the
best choice of an observable to be linked with the dynamic
aperture.

In this respect it is much more relevant to consider sim-
ply the expression for the relative losses at time N .

From Eq. (8) it turns out that

ΔI

I0
(N,D∞, b, κ) = e−

D2(N)
2 (12)

and the total relative losses are given by

ΔI

I0
(∞, D∞, b, κ) = e−

D2∞
2 . (13)

The scaling law for the total relative losses can be easily
found. In fact, if D∞ → αD∞, which corresponds to as-
suming that the dynamic aperture is rescaled or changed
due to a change in the dynamical system under considera-
tion, then the losses will scale as

ΔI

I0
(N,αD∞, b, κ) =

[
ΔI

I0
(N,D∞, b, κ)

]α2

. (14)

The previous equation shows that the dependence of the
losses on the value of the dynamic aperture is rather strong.
It is possible to linearise Eq. (14) around the nominal value
of the dynamic aperture corresponding to α = 1, obtaining

ΔI

I0
≈

(
ΔI

I0

)
α=1

+2

(
ΔI

I0

)
α=1

log

(
ΔI

I0

)
α=1

(α−1).

Of course, it could be argued that in general, not only the
dynamic aperture D∞ is affected by a change in the sys-
tem’s parameters, but also the constants in the logarithmic
law, namely b and κ. In this case, the scaling (14) is exact
only for the total losses, as these depend only on the value
of D∞. Indeed, if Eq. (12) is combined with (3), than no
simple scaling can be found other than the following

ΔI

I0
(N,D∞, b, κ) →

[
I1 I

β
2 Iβ

2

3

]α2

=
ΔI

I0
(N,αD∞, β b, κ),

with the following definitions

I1 = e−
D2∞
2 I2 = e−

2 b D2∞
2 logκ N I3 = e

− b2 D2∞
2 log2κ N .

The invariance property quoted in the introduction implies
that the general scaling holds

ΔI

I0
(Nβ/κ, αD∞, β b, κ) =

[
ΔI

I0
(N,D∞, b, κ)

]α2

where the exponent κ is always assumed constant as from a
theoretical point of view it should be a function only of the
number of degrees of freedom of the system under consid-
eration. Hence, two systems with the same dimensionality
can differ only by D∞ and b.

Zero Dynamic Aperture

This case corresponds to the situation where not all the
three parameters D∞, b, κ are positive. In this situation the
relevant quantity is the time at which the dynamic aperture
becomes zero, namely

D(N̄) = 0 log N̄ = |b|1/κ. (15)

From the parametrisation of the inverse logarithm law, N̄
is only function of b and κ, but not of D∞ that is of less
importance in such a scenario. From Eq. (15) a scaling law
for log N̄ can be derived and it reads

log N̄ → |β|1/(γ κ) log1/γ N̄ (16)

if b → β b and κ → γ κ.

EXPERIMENTAL VERIFICATION

The experimental verification of the proposed scaling
law is not so easy as the data available are rather limited.
After a search in the literature, an interesting data set was
found in Ref. [9]. There, intensity vs. time for the Tevatron
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with the antiproton beam, only, at injection energy was re-
ported. This data can be analysed using the approach pro-
posed here, as the only source of beam losses is given by
the non-linear effects due to the magnets field quality, and
hence related to dynamic aperture. The interesting point is
that in the paper the curve was analysed assuming a diffu-
sion process those properties are derived in order to match
the experimental data. The agreement between experimen-
tal data and the proposed model is very good.

As the current proposed approach assumes a pseudo-
diffusive behaviour à la Nekhoroshev it is natural to be-
lieve that a good agreement should be expected, too. Equa-
tion (8) is used to fit the data by adjusting the free parame-
ters D∞, b, and κ. Indeed, in order to make the non-linear
fit simpler from the numerical point of view, the various
sets of fit parameters D∞, b where computed for fixed κ,
which is then varied and determined by minimising the fit
residuals.

The best result is obtained for D∞ = 1.1, b = 645.6,
and κ = 3.2, which gives a residue of 4.6 × 10−7. This
should be compared with the residuals for the functions
proposed in Ref. [9] that are of the order of 5.5−6.3×10−7.
This indicates that the proposed approach is at least as good
as the standard diffusive models.

In Fig. 2 the experimental data, the fit functions proposed
in Ref. [9], and the one based on the inverse logarithm are
shown: the agreement is remarkable.

Figure 2: Beam losses at the Tevatron from Ref. [9], inter-
polated curves proposed therein, and the one proposed in
this paper. The agreement is remarkable.

It is worth noting that the asymptotic dynamic aperture is
positive, thus indicating that the motion is globally stable.
The rather large value of b indicates also that the stochastic
motion is occurring in a rather wide region of phase space.

SUMMARY AND CONCLUSIONS

In this paper an attempt to establish a link between the
value of the dynamic aperture and the beam losses is pre-
sented. Rather than using a diffusive model to describe
the particle’s motion and hence derive the evolution of the
beam intensity, the inverse logarithm decay of the dynamic
aperture as a function of turn number is used.

A relationship between the relative losses (total or up to
turn number N ) and the dynamic aperture is obtained so
that a scaling law can be derived for the case of positive
dynamic aperture. According to such a scaling law, the
dependence on the dynamic aperture is rather strong and a
variation of the dynamic aperture around the nominal value
induces a large relative variation of the losses.

For the case of zero dynamic aperture, a scaling law of
the logarithm of the turn number at which D(N̄) = 0 is
derived.

The proposed scaling law for intensity vs. time is applied
to a data set from Tevatron at injection energy: the agree-
ment is remarkable and at least as good as, if not slightly
better than, other standard diffusive models. Of course, it
would be nice to collect more experimental data to probe
this approach in more details and confirm the encouraging
results obtained so far.
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