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Abstract 

   Synchro-beta resonances enhance beam sizes 

dynamically. For accelerators aimed for high luminosity, 

the effect can be more serious since a difference between 

vertical emittance and longitudinal emittance tends to be 

larger. Therefore, it is necessary to estimate a tune spread 

of the synchro-beta resonances properly. Synchro-beta 

effect is caused by chromatic aberrations, which 

characterize how linear optics parameters, including tune, 

Twiss parameter, x-y coupling parameter, and other 

parameters, depend on the momentum deviation. The 

chromatic aberrations are defined by coefficients of an 

optics parameter expanded in terms of momentum 

deviation. The synchro-beta resonances caused by 

chromatic aberrations are discussed in this proceeding. 

We use 6-dimensional symplectic map, which is obtained 

from measured linear optics parameters, in order to 

simulate realistic beam motion. 

INTRODUCTION 

Lattice design codes like SAD [1] and MAD [2] 

calculate tune, twiss parameters and chromaticities. 

However the design values sometimes differ from 

measurements. This is because machine errors change 

chromatic aberrations. The discrepancies are corrected by 

introducing fudge factors in the magnet strength for 

example. However introduction of the factors do not 

ensure realistic simulation. In such case, it is better to 

construct an accelerator model with measured chromatic 

aberrations [3,4]. 

Chromatic aberrations sometimes play an important 

role in the beam-beam, space charge, electron cloud, and 

impedance phenomena. Symplectic expression for 

chromatic aberrations, which is implemented in computer 

program codes for studying the above-mentioned 

phenomena, makes it possible to study their effects 

directly. The synchro-beta resonance was studied to 

demonstrate the utility of the symplectic expression.  

PARAMETRIZATION 

Momentum deviation is = (p p0 )/ p0  normalized by 

reference momentum p0 . As is well known,  varieties 

slowly compare to betatron variables whose form is

x = (x , px, ,y , py, ), and it changes only in RF cavity. 

The transverse coordinate of beam particle,

x = (x, px ,y, py ), and the longitudinal coordinate z  are 

expressed by 

x = x +
 
 ( )                              (1) 

z = z   x ( )x + x ( )px ,   y ( )y + y ( )py ,   

 
(2) 

where the orbit distortion is characterized by the 

dispersion 
  

 
 ( ) = ( x ( ),   x ( ), y ( ),   y ( ))  , which is one 

of linear optics parameters. This transformation is 

represented by a 6 by 6 matrix R ( )  as follows: 

(x, px ,y, py ,z, ) = R ( )(x, px ,y, py ,z, )          (3) 

R ( )  partially diagonalizes M 6 ( ) , which is transfer 

matrix in a revolution, into 4 by 4 and 2 by 2 matrixes 

M 4 ( )  and Mz ( ) , respectively. 

M 6 ( ) = R ( )M 4 2 ( )R
1 ( )              (4) 

where 

M 4 2 ( ) =
M 4 ( ) 0

0 M z

 

 
 

 

 
                 (5) 

M 4 ( )  and  Mz  represent the betatron and synchrotron 

motions, respectively. Definitions of the linear optics 

parameters 
x ,y , x ,y , x ,y ,ri (i = 1 ~ 4) are as follows [5,6] 

M 4 ( )= R( )M 2 2 ( )R
1 ( )              (6) 

where the 4 by 4 matrix M 2 2 ( )  is partially 

diagonalized as follows: 

M 2 2 ( )=
Mx ( ) 0

0 My ( )

 

 
 

 

 
                 (7) 

Mi( ) =
cosμi( ) + i( )sinμi( ) i( )sinμi( )

i( )sinμi( ) cosμi( ) i( )sinμi( )

 

 
 

 

 
   

(8) 

Mz =
cosμ z + z sinμ z z sinμ z

z sinμ z cosμ z z sinμ z

 

 
 

 

 
 
         (9) 

where i = x,y . z , z , z  are determined from momentum 

compaction factor, length of ring, accelerated gradient, 

and energy. R( ) , which characterises x-y coupling, is 

parameterized by, 

R( )=
r0 ( )I 2 S2R2

t ( )S2
R2 ( ) r0 ( )I 2

 

 
 

 

 
                (10) 

R2 ( ) =
r1 ( ) r2 ( )

r3 ( ) r4 ( )

 

 
 

 

 
     S2 =

0 1

1 0

 

 
 

 

 
        (11) 

where r0 ( ) = 1 det(R2 ( ))  and I 2  is 2 by 2 unit matrix. 

These linear optics parameters is expanded in terms of  

as follows: 

( )= n
n

n=0

, ( )= n
n

n=0

( )= n
n

n=0

,ri ( )= ri,n
n

n=0

               (12) 

SYMPLECTIC EXPRESSION 

   Notice that 6-diemnsional matrix M 4 2 ( )  satisfies 

symplectic condition only when  equal zero. In order to 

make 6-dimensional symplectic map for non-zero , 
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following Hamiltonian (Generating function [7]) is 

supposed. 

HI (x, p x ,y, p y ,  )=
n=1

(an x 2 + 2bn xp x + cn p n
2

+ 2dn xy

+2en xp y + 2 f n yp x + 2gn p x p y + un y 2 + 2vnyp y + wn p y
2 )  n /2

(Ax 2 + 2Bxp x +Cp n
2

+ 2Dxy + 2Exp y

+2Fyp x + 2Gp x p y +Uy 2 + 2Vyp y +Wp y
2 ) /2

(13) 

The upper bar of x , px  and others means those after 

transformation. The Hamiltonian gives particle 

coordinates following transformation, 

x = x + Bx +Cp x + Fy +Gp y

px = p x + Ax + Bp x +Dy + Ep y

y = y +Vy +Wp y + Ex +Gp x

py = p y +Uy +Vp y +Dx + Fp x

                   (14) 

z = z +
H I

 
                                        (15) 

=                                                           
Then, the transformation of transverse coordinates and 

momentums is represented by MH ( ) , 
x 

p x
y 

p y

 

 

 
 
 
 

 

 

 
 
 
 

= M H ( )

x

px

y

py

 

 

 
 
 
 

 

 

 
 
 
 

                           (16) 

   Relations of an ,...,wn  and x ,n , x,n , μx,n , y,n , y,n , 

μy,n , ri,n , i = 1 ~ 4  are obtained by comparison of the 

transfer matrices written by the chromaticities and by 

MH ( ),  
M 4 ( )=M 4 (0)MH ( )                  (17) 

Then, the coefficients an ,...,wn , which are described by 

linear optics parameters, are derived from 

MH ( )= M
1(0)M ( )                  (18) 

Since linear optics parameters are measureable, an ,...,wn  

are numerically determined. Therefore, a one-turn map is 

obtained by 

  
M 4 2 (0) e :H I : x                  (19) 

where x = (x, px ,y, py ,z, ). 

MACHINE ERROR 

   There are many kinds of machine error. Some of them 
affect chromatic aberrations, for example, edge effect 
error or gradient errors of quadrupoles or position errors 
of sextupoles. It is known that the gradient errors of 
quadrupoles are very small. Here, position errors of 
sextupoles are treated. By assuming random position 
errors of sextupoles, effect of the machine errors on 
chromatic aberrations can be estimated. Amplitude and 
seed of errors are chosen so that emittance coupling (

y / x ) is 1% after optics correction. 

   While, chromatic aberrations of the linear optics 
parameters at the interaction point are measured using a 
turn-by-turn monitor by changing the energy of the beam 

[8]. The linear optics parameters have been measured in a 

single bunch operation, and not in collision in KEKB.  

   In Figure 1, red points show measured linear optics 
parameters r3,r4 , which depend on momentum deviation. 
While, green dashed line describes average of the 
simulation results used 1000 kinds of random position 
errors. Blue dashed line represents standard deviation of 
them. 
   Since measurement of absolute value (value at =0) is 
difficult, difference of it between the measurement and 
the simulation is not important. However difference of 
their shape is not negligible. Especially, higher order of  
is not seen in simulation results. It is very difficult to 
match measurement data to simulation results. 

 

 
Figure 1: Example of measured linear optics parameters 

r3  and r4 . 

SYNCHRO-BETA RESONANCE 

The chromatic aberrations cause synchro-beta 

resonances, because the Hamiltonian contains quadratic 

terms of transverse coordinate and power series of 

momentum deviation. The synchro-beta resonances are 

studied using the symplectic map expressed by the 

Hamiltonian. A multi-particle tracking code is developed 

to simulate the synchro-beta resonance. 

1000 macro-particles are initialized with a Gaussian 

distribution in which the initial size is given by the 

emittance and linear optics parameters, where the 

horizontal, vertical, and longitudinal emittances are 

x = 1.8 10 8m , y = 1.8 10 10m , and z = 4.9 10 6m

, respectively. The macro-particles are tracked with 
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radiation damping (4000/2000 turns in transverse/ 

longitudinal) and excitation. The equilibrium beam sizes 

in the horizontal and vertical planes are obtained by an 

average of the particle coordinates after 30,000 turns.  

The simulation is performed for scanning the horizontal 

tune with a fixed vertical tune 
y = 0.588  

and 

longitudinal tune z = 0.021, where the coefficients of 

Hamiltonian are kept constant in the tune scan. We also 

assume that 0-th order coupling parameters are zero 

because they are optimized by a day-by-day operation in 

KEKB. 

Figure 2 shows the tune scan of the normalized beam 

sizes with a step of x = 1.4 10 4 . The normalized 

beam sizes mean beam sizes divided by 0 = (0) . 

Dispersion is not taken into account in this simulation. 

This simulation is treated up to the 3
rd

 order. Several 

peaks in the beam sizes are observed in the figure.  

 

 
Figure 2: Horizontal (blue) and vertical (red) beam sizes 

in the tune space on the simulation. ( y = 0.588) 
 

The beam sizes are measured with a synchrotron light 

monitor using an interferometer [9]. Figure 3 shows the 

beam size measurement performed in KEKB on May 16, 

2008. Several peaks in the beam sizes observed in the 

figure are similar to those found in the simulation. The 

measurement was done for various 
y
. The peaks shifted 

with a change in 
y

. The peaks correspond to x-y 

 

Figure 3: Horizontal (blue) and vertical (red) beam sizes 

in the tune space on the measurement. ( y = 0.6) 

coupling and its synchrotron side bands. The behaviour of 

the horizontal and vertical sizes at the synchrotron side   

band resonance of x-y coupling agrees with the 

simulation; that is, the vertical size increases while the 

horizontal size decreases in the measurement. 

SUMMARY 

   The synchro-beta resonance was studied to demonstrate 

the utility of the symplectic expression. A symplectic 

expression is obtained for chromatic aberrations of linear 

optics parameters up to 3rd order in momentum deviation, 

which is given by performing measurements using turn-

by-turn position monitors. Multi-particle tracking 

simulation using the symplectic expression was compared 

with a beam size measurement in the tune space. The 

simulation results qualitatively agree with the 

measurement in the resonance behavior, while some 

discrepancies are seen in stop band widths quantitatively. 

    This symplectic map can be used for six-dimensional 

particle tracking simulations to study the synchro-beta 

resonance, beam-beam, space charge, impedance effects, 

and so on, which are influenced by chromatic aberrations.  

REFERENCES 

[1] http://acc-physics.kek.jp/SAD/ 
[2] http://mad.web.cern.ch/mad/ 
[3] Y. Seimiya, K. Ohmi, D. Zhou, J. W. Flanagan, Y. 

Ohnishi, to be published 
[4] Y. Seimiya, K. Ohmi, H. Koiso in Particle Accelerator 

Conference PAC09, 2009, Vancouver, Canada, 
TH6PF080. 

[5] L. Teng, Concerning n-Dimensional Coupled 

Motions, FN-229 (1971), and D. Edwards and L. 

Teng, IEEE, NS-20, 885(1973). 

[6] K. Ohmi, K. Hirata and K. Oide, Phys. Rev. E49 751 

(1994). 

[7] H. Goldstain, C. Poole and J. Safko, Classical 

Mechanics, 3rd edition, Addison Wesley, p 385 

(2002). 

[8] Y. Ohnishi, K. Ohmi, H. Koiso, M. Masuzawa, A. 

Morita, K. Mori, K. Oide, Y. Seimiya and D. Zhou, 

Phys. Rev. ST-AB 12, 091002 (2009). 

[9] J. W. Flanagan, S. Hiramatsu and T. Mitsuhashi, 

proceeding of European Particle Accelerator 

Conference (EPAC2000), 1783 (2000). 

 

 

THPE070 Proceedings of IPAC’10, Kyoto, Japan

4682

05 Beam Dynamics and Electromagnetic Fields

D02 Non-linear Dynamics - Resonances, Tracking, Higher Order


