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Abstract

Nonuniform dipoles with bending field variation have
been studied for reducing storage ring emittance in recent
years. According to a new minimum emittance theory,
the effects of an arbitrary dipole can be characterized by
two parameters. To have a better idea of the potentials of
nonuniform dipoles, here we numerically explore the val-
ues of these two parameters for optimal emittance reduc-
tion.

INTRODUCTION

Minimizing beam emittance in storage rings is desired
by ever-increasing demands of higher beam quality for both
modern synchrotron light sources and damping rings in
high-energy linear colliders. In recent years, there have
been efforts to reduce the emittance below the well-known
theoretical minimum by using dipoles with bending-radius
variation [1-5] The new theoretical minimum emittance
with arbitrary dipoles was established [5] as

ε =
Cqγ

2

Jx
Fmin, (1)

where Cq = 3.84× 10−13 m; γ is the Lorentz factor; and
Jx is the horizontal damping partition number, which we
will not consider here. The lattice-dependent factor F is
given for three types of commonly interested lattices: AME
stands for the minimum emittance under achromatic con-
ditions, and TME and EME stand for the theoretical mini-
mum emittance and effective minimum emittance, respec-
tively. The minimal F for these lattices reads

Fmin= 2
√
|A|

⎧
⎪⎪⎨

⎪⎪⎩

1 AME√
1− c TME

√
[ 1+(q+3) qc/2 ] [ 1+((1+τ)q+3) qc/2 ]

1+qc , EME

(2)
where |A| and c are two parameters solely determined by
the dipole; τ = Jx/JE is the ratio of horizontal to longi-
tudinal damping partition numbers; and the q parameter is
determined by the cubic equation

(1+τ)q3 + 2(2+τ)q2 + [3 + (2+τ)/c]q + 2/c = 0. (3)

In this paper, we will use the nominal value τ = 1/2, while
the effect of changing τ has been addressed in [5].
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Developed from the general minimum emittance theory,
the |A| and c parameters are characteristics of a dipole
magnet. For typical uniform dipoles of bending angle θ,
2
√|A| � θ3/4

√
15 and c � 8/9 under the usually good

small-angle approximation. It has been shown that it is
possible to reduce |A| and increase c, thus reducing min-
imum emittance, by optimizing the bending radius profile
of dipole magnets. It also becomes clear that the mini-
mum emittance can approach zero mathematically, except
for practical limitations due to magnetic field strength and
so on. Thus, a natural question is the potential gains in
emittance reduction that nonuniform dipoles may provide.
A clear and easy answer is practically important in order
for machine designers to decide whether it is worthwhile to
explore such a potential. The fact that an arbitrary dipole
can be characterized by only two values |A| and c (thus a
single point in |A|-c parameter space instead of a detailed
bending-radius profile) provides an effective way to investi-
gate and present a clear picture of the potentials of nonuni-
form dipoles for emittance reduction. In other words, the
answer to the question lies in the distribution of dipoles in
the |A|-c parameter space, especially the distribution of op-
timized dipole-field profiles and corresponding emittances.
This paper reports an optimization study of dipole-field
profiles using genetic-algorithm (GA)-based optimizers.

Since there are two objective parameters to optimize, we
choose to compute the Pareto-optimal solutions in the |A|-
c parameter space using a multi-objective GA optimizer
based on the NSGA-II algorithm [6]. For convenience,
we adopted a MathematicaTM implementation of this algo-
rithm [7]. As an independent check and further refinement,
a single-objective parallel GA package [8] is also used to
optimize some special cases. Good agreements are found
for comparable results.

In the following sections, we will briefly describe the
methods used for this study, and then present some of
our results in graphs that hopefully give a clear picture of
the potentials to reduce beam emittance with nonuniform
dipoles. A more complete presentation will be published
soon.

METHODS

To evaluate the efficacy of nonuniform dipoles for emit-
tance reduction as well as lattice feasibility, we use as the
reference a uniform dipole, 1 meter long with 10-meter
bending radius, and compare it with nonuniform dipoles
having the same length and bending angle. The resulting
emittance reduction factor and the ratio of initial lattice
functions should apply to other dipole parameters, as long
as the small-angle approximation is valid, thanks to the
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scale-invariant property of the theory. This helps to reduce
the complexity of the problem dramatically and makes our
optimization results suitable as a general reference for the
potentials of nonuniform dipoles.

To optimize a field profile, we use a large number (33
for the results presented here) of equal-length dipole slices
to approximate an arbitrary dipole and use the bending cur-
vature h(s) = 1/ρ(s) to represent a dipole-field profile,
where ρ(s) is the bending radius. Our computation starts
from the basic quantity in the minimum emittance theory,
i.e., the projected dispersion vector ξ̂ = [ξ̂, ξ̂′]T that relates

to the dispersion vector η via η(s) = M(s)
(
η0 + ξ̂(s)

)
,

where M is the linear transfer matrix and η0 is the initial
dispersion. To numerically solve for the projected disper-
sion ξ̂ and ξ̂p ≡ ξ̂′, we directly solve the first-order differ-
ential equations ξ̂′ = M−1[0, h]T , i.e., ξ̂′ = −hM12 and
ξ̂′p = hM11 with the initial conditions ξ̂(0) = ξ̂p(0) = 0.

Using ξ̂ we can compute the matrices A, B, and the param-
eter c as defined by

A = 〈〈ξ̂ξ̂T 〉〉, B =
〈〈ξ̂〉〉〈〈ξ̂〉〉T

ρ̌
, and c = −Tr(JAJB)

|A| ,

(4)
where 〈〈v〉〉 ≡ 〈v|h|3〉/〈h2〉, ρ̌ ≡ 〈〈1〉〉, and J = [0, 1;−1, 0].
The average over the dipole, 〈··〉, is done by numerical in-
tegration.

The optimization is carried out with GA optimizers. A
population of 100 individuals is randomly initialized with
each individual having a chromosome length equal to the
number of dipole slices. The population is then evolved
using the elitist multi-objective optimizer based on ge-
netic algorithm with non-dominated sorting (NSGA-II).
After sufficient generations, the Pareto-optimal solutions
are obtained. The emittance and optimal lattice parame-
ters are computed for each individual in the optimal so-
lutions and the results are summarized in graphs. As an
independent check and for better converging efficiency, a
single-objective parallel GA package (PGApack) is used
to optimize the AME, TME, and EME emittances directly,
which should reproduce the corresponding extreme points
of emittance curves obtained from the optimal population.

To estimate lattice feasibility of an optimal solution, we
compute the ratio of initial lattice parameters of the opti-
mized profile to the reference uniform dipole. Such infor-
mation should indicate the difficulty of realizing an opti-
mized result, although it is much more involved to design
a lattice. The lattice-parameter distribution on the Pareto-
optimal solutions provides a useful way to make a trade-off
between emittance reduction and lattice difficulty. Our goal
is to understand the landscape for emittance reduction.

OPTIMIZATION RESULTS

Pareto-Optimal Solutions

Pareto-optimal solutions in the objective space reveal
compromises among multiple objectives to be optimized.
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Figure 1: Pareto-optimal solutions in the objective space.
The colored dots represent a population of 100 whose max-
imum field strength is higher than the reference dipole by a
factor of 2 (blue) and 4 (red). The markers represent results
of single-objective PGA optimization of TME.

In our case, we need to minimize |A| and maximize c for
minimal emittance. In fact, we choose to minimize both
2
√|A| and

√
1− c, normalized by the values of the ref-

erence uniform dipole. The resulting Pareto-optimal solu-
tions under several maximum field strengths are plotted in
Fig. 1. From this information and the emittance formula,
it is easy to see the potential emittance reduction using
nonuniform dipoles. To be more explicit, we computed the
emittance reduction factor for AME, TME, and EME lat-
tices using the optimal solutions in Fig. 1 and summarized
the results in Fig. 2. The behaviors of AME and EME are
similar, and both are dominated by the 2

√|A| factor. This
is good since both AME and EME are of interest to light
sources, and the similarity may allow some flexibility in
switching lattices. On the other hand, the TME reduction
is much larger and dominated by the

√
1− c factor. This

plot suggests that nonuniform dipoles will be more effec-
tive for damping rings since they favor TME lattices. Note
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Figure 2: Emittance reduction factors for AME, TME, and
EME lattices at maximum field strength 2 (blue) and 4
(red) times higher. The markers represent results of single-
objective PGA optimization of TME, which show good
agreement, although the multi-objective optimization is yet
to converge to the optimal.
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Figure 3: Relative increases in beam energy spread for the
optimal solutions.

that dipoles optimized for TME are not effective at all for
AME and EME. To show the relative increase in beam en-
ergy spread, Fig. 3 plots the AME, TME, and EME versus
the energy spread for the two sets of Pareto-optimal solu-
tions. The increase in energy spread might limit the useful-
ness of nonuniform dipoles in some machines.

Lattice Parameters for Optimal Emittance

In order to get some idea of the difficulty in implement-
ing lattices of the optimal solutions, Fig. 4 plots the emit-
tances versus the relative change in initial beta functions.
It is encouraging to see that significant emittance reduc-
tion (not far from the optimum) can be achieved without
large changes in the initial Twiss parameters. Furthermore,
Fig. 5 plots the relative change in initial beta functions ver-
sus the initial alpha functions. It shows that the changes
in beta and alpha functions are more or less proportional,
which indicates that the emittance reduction is less sensi-
tive to deviations in initial Twiss parameters (see Fig. 1 in
[5]). Due to space limitations, we will leave other factors
such as dispersion functions to a future publication.

Field Profiles

The optimal bending curvatures for a couple of special
cases are shown in Fig. 6. Note that emittance reduction is
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Figure 4: Relative changes in initial β functions for the
optimal solutions.
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Figure 5: Relative changes in initial β and α functions for
the optimal solutions.

not very sensitive to field errors.
Thanks M. Borland and Q. Qin for introducing Y. Wang

and Y. Peng, respectively, to work on this subject. Thanks
to L. Emery for support and helpful discussions.
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Figure 6: Optimal curvature profiles (from PGA) for min-
imal TME at maximum field strength 2 (blue) and 4 (red)
times higher than the reference dipole (dash). The black
one is from multi-objective optimization, which is not fully
optimized, with a few percentage lower performance.
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