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Abstract 
The possibility of achieving higher accelerating 

gradients at higher frequencies with the reduction of the 
effect of HOMs, compared to conventional accelerating 
structures, is increasing interest in the possible use of 
Photonic Crystals (PC) for accelerator applications. In 
this paper we analyze how the properties of the lattice of a 
PC resonator can be engineered to give a specific band 
structure, and how by tailoring the properties of the lattice 
specific EM modes can either be confined or moved into 
the propagation band of the PC. We further go on to 
discuss the role of disorder in achieving mode 
confinement and how this can be used to optimize both 
the Q and the accelerating gradient of a PC based 
accelerating structure. We also examine the use of high 
disorder to give rise to Anderson Localization, which 
gives rise to exponential localization of an EM mode. 
Discussing the difference between the extended Bloch 
wave, which extends over the entire PC, and the Anderson 
localized mode. 

 
INTRODUCTION 

Conventional accelerating technologies suffer from a 
number of issues which limit performance, such as 
wakefields, which has created interest in the possible use 
of Photonic Crystals (PC) for accelerator applications [1]. 
PC can be described as a periodic array of varying 
permativity (ε). Propagation of EM waves through this 
lattice is described by Bloch-Floquet theorem, where for 
specific lattice configurations band-gaps in the 
frequencies of EM waves able to propagate appear. PC 
resonators can be formed by creating a defect in the 
lattice, excitation of EM fields in the region will confine 
frequencies that are inside the band-gap of the lattice 
whilst the rest propagate freely away. Defects can be 
realized in PC structures by either increasing or reducing 
the effective refractive index in a localized region of the 
structure. In this paper, we describe how PC structures 
can be engineered to confine specific frequencies whilst 
forcing others to propagate away. Previous studies on 
designing PC structures have focused on maximising the 
band gap, where the effects of refractive index contrast, 
filling factors and different lattice geometries on the size 
of the band gap have been considered [2].  

DISORDER 
The most commonly used type of PC in high power 

applications is the 2-Dimensional (2D) triangular lattice 
of rods with separation a and radius r, where the central 
rod is removed to create the defect, forming the resonator. 
Figure 1 shows the ideal PC structure considered. 

 
Figure 1: Ideal PC Structure, consisting of Perfectly 
Electrically Conducting (PEC) rods. Removal of the 
central rod localises a single EM field at f0 = 9.4072 GHz. 
rods have radius of 0.00186 m and separation of 0.0124 
m. The contours show the extent of the electric field of 
the mode. 

 
  Any physically realizable structure will have some 
degree of disorder. Previous papers have extensively 
studied the effect that disorder in PC structures has on 
transmission and reflection properties (for example [3]). 
Previous work has focused on disorder in bulk crystals. In 
this paper we focus on the effect of disorder on the 
fundamental frequency and the peak electric field 
confined in a photonic resonator, the investigations are 
carried out using the methodology of reference [3]. 

Disorder was introduced to the structure by adding a 
random number between ±0-15%, 0-10%, 0-5%, or 0-1%, 
of the initial parameters a and r, to each individual rod. 
Disorder is applied to the position, radius and `both a and 
r' of each rod. The random number used was taken from a 
uniform distribution pseudo-random number generator. 
This effectively introduces a white noise error to the 
dimensions of the PBG structure. 300 different 
configurations of the structure were generated for each 
level of disorder. Each ensemble was processed to find 
the resonant frequency and the peak electric field at the 
centre of the structure, and then averaged to give a mean 
value of the resonant frequency and peak electric field. 
  The resonant frequency of each structure was calculated 
using the commercially available finite-element package 
COMSOL, to find the eigenmodes of each structure. The 
peak electric field simulations were performed using a 
finite-difference time-domain method, with subpixel 
smoothing for increased accuracy [4]. Each structure was 
excited with a point source at the defect generating 
guassian pulse. 
  The effects of disorder on the resonant frequency are 
shown in figure 2. Although the mean resonant frequency 
remains fairly constant, we note that for some structures 
increasing disorder causes the resonant frequency to 
significantly deviate from the base value. This behaviour, 
as explained in [3], is due to the dominate effect of the 
scatters closest to the defect region.  
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Figure 2: The effect of disorder in radius, separation and 
both applied to the whole structure. The vertical error bars 
show one standard deviation from the mean. The 
horizontal line indicates the base frequency 
 
  The effects of disorder on the peak Ez component of the 
electric field is shown in figure 3. As expected, increasing 
disorder of the structure causes the mean peak field to 
decrease. In terms of percentage disorder, separation has a 
larger effect than radius. While the effect on the peak 
field of applying disorder to both, can be seen as 
approximately equal to the sum of the separate variations 
in position and radius. In terms of absolute variation, we 
can see that the effect on the peak field is approximately 
equal in both cases. There are some specific ensembles 
that produce results showing an increase in the maximum 
peak electric field. As discussed in [3] this can be 
understood in terms of the defect volume over which EM 
energy is distributed. The energy stored in the EM field is 
given by (E · D + |H|)/2, where E and H are the electric 
and magnetic field components and D the electric 
displacement field. To maintain a constant energy, a 
reduction in the volume results in an increase in EM field 
magnitude. 

 Figure 3: The effect of disorder in radius, separation and 
both applied to the whole structure, on the peak electric 
field. 

  In a perfect lattice waves exist as extended states over 
the structure (Bloch waves). By introducing disorder, we 
break coherence, requiring 2nd quantisation to study 
propagation, treating transport as discrete particles. We 

consider the regime where the wavelength (λEM) is less 
than the mean free path of a photon in the lattice. In this 
regime specific ensembles can exponential localised a 
specific frequency. As the wave is not an extended state 
the losses are minimised and the Q maximised by several 
orders of magnitude. Figure 4 shows experimental and 
numerical results for a Anderson localisation structure 
with a Q > 109. Although the high Q presents difficulty in 
coupling a field in and out of the region. Conventional 
techniques either cannot couple or they perturb the system 
altering the spectrum. 
 

 
Figure 4:  (a) The numerical results showing localisation 
of a field at 9.412 GHz in a highly disordered structure,  
(b) Experimental results for the reflection over the 
structure, the red circle shows the measured resonance 
predicted in (a) but is shifted due to the perturbation of 
the probe by 300 MHz  (c) physical structure of (a).  
 

 
DISPERSION ENGINEERING 

We now consider how structures can be engineered to 
confine specific modes whilst other modes propagate 
away. The dispersion was computed using a Plane Wave 
Expansion (PWE) technique. The confined field position 
and frequency within the band gap was computed by the 
FDTD technique used in the previous section. The PWE 
was used to perform a multi- parameter scan by vary the 
dielectric constant of the scatterers while sweeping the 
ratio from r/a = 0.1 - 0.3.  As shown in [2] the size of any 
particular band gap increases with refractive index 
contrast and decreases with higher values of the ratio r/a. 
Also, as the ratio r/a increases, higher order band gaps are 
introduced. For a given r/a, the number of band gap 
increases with increasing permittivity. 
 In Figure 5 (r/a = 0.2) five distinct band gaps were found. 
A single gap was found for ε = 3 to 11. Two gaps were 
found for ε = 11 to 18, three gaps were found for ε = 18 to 
52, four gaps for ε= 52 to 63, and five for ε = 63 to 65. 
We found that TM010 like modes were confined not just 
in the first band gap, but also in higher order band gaps. 
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The third band gap was found to confine both TM010 like 
and TM011 like modes. 

 
Figure 5: Confined fields (r/a=0.2) within the band gaps 
with varying dielectric constants. The field profiles of the 
Confined fields are inset. 
 
Considering a structure where a larger defect region was 
created by removing multiple rods, as shown in figure 6 
(r/a =0.1), the monopole mode drifts down towards the 
lower edge of the band gap, and a dipole enters into the 
gap. The frequency of both modes increases with higher 
values of ε. The two higher order band gaps did not 
confine any mode.  

 
Figure 6: confined fields (r/a=0.1) within the band gaps 
for varying dielectric constants. The field profiles of the 
Confined fields are inset. 
 
In order to remove the monopole mode from the bandgap, 
additional perturbations must be introduced to the lattice. 
Therefore, we investigated the effect of varying the radius 
of the rods around the double diagonal defect. Focusing 
on a dielectric constant of 9.5 (Dynallox100) for the 
scatters. The results are presented in figure 7. We found 
that the frequency of the both monopole and dipole modes 
decreased with increased r/a of the inner rods. At R/a = 
0.11, the monopole mode slipped below the lower edge of 
the band gap. As the frequency of the modes continue to 
drop, HOMs were introduced into the gap at r/a = 0.14. 
The region between the two dashed lines in figure 7 is the 
operational region for a structure where only the dipole is 

confined within the band gap and all other modes are 
extended and are able to propagate way. 
 

 
Figure 7: The effect of varying the radius of the innermost 
rods around the defect r/a = 0.1 and ε= 9.5. The field 
profile is shown in the inset 

CONCLUSIONS 
  We have found that disorder and systematical movement 
of individual rods result in the ability to ‘tune’ the PBG 
structure, and it is possible to increase peak field by 
approximately. In terms of structure fabrication, a 
maximum error in the innermost ring of rods of 1% in 
separation, 5% in radius, and less than 10% in disorder in 
all outer rods, leads to an average resonant frequency 
equal to the ideal structure (9.4072 GHz) with a 
maximum variation of 0.2% (20 MHz), and maximum 
variation of 0.5 V/m in the peak field. To achieve this for 
the structure considered in this paper requires fabrication 
of the rods with a radius variation of 150 μm, and a 
separation variation of 100 μm for the innermost ring of 
rods. This level of accuracy in fabrication, although 
difficult, is within the capability of modern fabrication. 
 We have demonstrated a systematic approach to mode 
engineering within the band gap of a photonic lattice. We 
have designed a monomodal structure that confines only 
the TM011-like dipole mode while allow all other modes 
to propagate away. A similar approach can be employed 
to design monomodal structures that confines only 
monopole, quadruple or higher order modes.. 
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