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Abstract 

The IFMIF-EVEDA project aims to de

feasibility of a high intensity material irrad

and one of its main components is a protot

intensity deuteron accelerator. This prototyp

in Rokkasho in Japan. It includes a cryomod

of 8 superconducting cavities (HWR) pow
kW couplers to accelerate the deuteron beam

to 9 MeV. The beam is focused inside the c

8 superconducting solenoids. The cryomod

to respect some severe beam dynamics req

particular a restricted space for the compon
and an accurate alignment to be kept d

down. A double cryogenic supply has been 

is necessary to control the cavity cooling 

from the solenoid one. The cryomodule 

also be compatible with its environment in 

building. This paper gives a general ove
cryomodule current design and its interfac

the concept chosen for the cryogenic sy

summarizes the method foreseen for the 

alignment and describes the integration

Rokkasho. 

CRYOMODULE DESIG

General overview 

The IFMIF (International Fusion Mater
Facility) project aims to build a high inte

irradiation facility to develop and test some 

for the future fusion reactors. The IFMIF 

deuteron accelerator (125 mA in continuou

will include 2 accelerating lines with 4 cry

the accelerator prototype only includ
cryomodule. This cryomodule includes 8 su

Half Wave Resonators (HWR) operating 

providing a 4.5 MV/m accelerating field to 

deuteron beam from 5 MeV to 9 MeV [1].  

Figure 1: General Layout of the IF

accelerator in the Rokkasho vault 
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onitors (BPM), 

a support and its alignment system, 

vacuum systems, a thermal and a m

cryomodule is around 5m long, 2m 

with a mass around 15 tons. The c

have been defined according to t

constraints and the beam axis position
accelerator at 1.5 m above the 

cryomodule, the coupler is indeed po

limit the mechanical stresses on its c

the cavity is therefore fixed horizo

beam losses due to its high intens

design has to respect some seve
requirements, in particular a restr

component interfaces which have 

much as possible [2]. This cryomodu

an accurate alignment of the cav

taking into account the thermal shri
for such a cryomodule size. The 

tested in Europe before being sh

Japan. Its design should therefore be

transport constraints.  
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(diameter of 180mm and around 100

cooled with saturated liquid helium a
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the membrane to change the distance betw

bottom and the beam axis which allows tun

frequency [3]. For thermal deposit and r

(RF) issues, the plunger should be superco
the vessel will be filled with liquid hel

plunger will be moved by an actuator co

controlled motor, an infinite screw and a me

Figure 3: HWR section view 

Solenoid Package Design 

To limit the beam losses, it was necessar

between each cavity a solenoid package

focusing superconducting solenoid magnet

But to also respect the fringe field level re

HWR cavities (< 20mT), it has also been ad

magnetic shielding with an anti-solenoid
these superconducting magnets are made w

titanium wire and cooled down with liquid h

in a dedicated stainless steel helium vessel. 

package is powered by six resistive curren

by helium gas [5].  

Coupler Design 

The cavities are powered by 200 kW coup

in CW and made of a copper antenna aro

long fixed on an insulating ceramic win

coupler is fixed vertically, under the cavit

connection with the RF lines in the Rokka

therefore integrated in a space limited by 
height. The antenna length is consequently 

between the RF optimization, the mechanic

the ceramic window and the space availa

cryomodule for the integration. An appro

cooling system has been designed to maint

temperature at 4.4K: the antenna is cooled w
the external conductor with helium gas.  

Cryogenic circuit design 

The superconducting HWRs and solenoid

operating at 4.4K and each of these elemen

saturated liquid helium bath (thus a total of 

double liquid helium supply has been des
necessary to control the cavity cooling 

from the solenoid one. Two helium inlets m

therefore been connected to the cavity ves

solenoid vessels and only one phase separat

output helium gas at the top of the cryom

specific circuits have been added to cool do
tuning systems, the current leads and the po

The nominal pressure of the liquid heliu

been fixed at 0.12MPa and its maximum pr

ween the vessel 

ning the cavity 

radiofrequency 

onducting and 
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insulating vacuum but also to sup
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ease the final assembly. The feet sho

align the cryomodule in the Rokkasho

Figure 4: Cryomodule cryogenic
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The beam dynamics requires align

the solenoid packages with an accura

the beam axis.  
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some sliding attachments to man

thermal deformation between the s

invar rod. This support will also be u

assembly of the cavities, solenoid pa
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Integration in Rokkasho 

After transportation to the Rokkash

cryomodule will be first controlled to chec

of damages. The HWR vacuum level and 

will be controlled before the installa
cryomodule in the vault. As the cryomodul

to be handled by the crane available in the v

slid on the floor with some removable ro

After positioning, the assembly will be end

the connection to the other subsystems, to 

transfer line and to the RF power lines. T
connected to the RF lines by a transition bo

of their differential thermal shrinking esti

10mm, some flexible elements have to be

RF lines to avoid any critical stress on

ceramic window.    

Alignment procedure 

All the accelerator subsystems will be a
vault by laser tracker. The cryomodule alig

performed in several steps: the cavities and 

first be aligned on their common supp

purpose, these components include several

supports whose positions are accurately loca
to the beam axis. Next, the position of the s

adjusted in the vacuum tank and will 

referenced on external mirrors targets 

vacuum tank. These targets will finally be

the cryomodule on the beam line.  

CRYOGENIC SYSTEM DE

The cryogenic plant aims to cool down th
cold mass (around 2500 kg) and to maintai

nominal conditions of the superconducting c

has mainly been designed to make the

operation reliable and safe more than to opt

thermodynamic efficiency.  

Internal cryogenics 

The superconducting components are coo
saturated liquid helium bath at 0.12 MPa w

should be regulated with a minimum of v

cryogenic system takes into account some 

heat losses and also the resistive transitio

current leads and the couplers, connected 
and 300 K. In the final mixed mode, the t

are estimated for the cryomodule around 7

(refrigeration part) and 37 l/h (liquefactio

options are studied for the thermal shield 

liquid nitrogen or with He gas. The first o

the time for the cooling down and in case o
helium cryoplant, it limits the cold mass wa

allows a quicker starting up. But this op

drawbacks in terms of radioprotection m

operation. The final option is currently unde
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External cryogenics 

A liquefier produces liquid helium

dewar (2000 l) which is directly

cryomodule. In this way, the cryom

continue during at least 5 hours in t
cryogenic failure. The cold box 

installed in the power supply area a

the cryomodule with a vacuum ins

The helium compressor, two large 

the nitrogen tank will be installed in 

Taking into account the cryomodul
classical margin, the helium refrig

requires a 140W power at 4.4K with 

of 55 l/h. The helium maximum pre

0.15 MPa in the cryomodule by sev

valves located outside the vault to a

helium exhaust in the vault. 

Figure 5: Principle scheme of the c

CONCLUSIO

The cryomodule design is still in p

the magnetic and thermal shields deta
be completed for the end of the year

scheduled to be assembled in 2013 a

Saclay before being shipped to Japa

commissioning, which should start in
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