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Abstract 
For high average current electron accelerators, such as 
Energy Recovery Linacs (ERL), the characterization of 
basic electron beam properties requires non-interceptive 
diagnostics. RadiaBeam Technologies is developing an 
inexpensive, stand-alone laser wire scanner (LWS) system 
specifically adapted to ERL parameters. The proposed 
system utilizes distinctive features of ERL beams, such as 
a relatively long bunch length and ultra-high repetition 
rate, to maximize photon count while using off the shelf 
laser technology. The RadiaBeam LWS prototype 
presently under development will be installed and 
commissioned at the Brookhaven National Laboratory 
(BNL) ERL facility. This system's design and projected 
performance are discussed herein. 

INTRODUCTION 
In high average current electron accelerators, such as the 
Energy Recovery Linac (ERL) [1,2], the determination of 
basic electron beam properties including a transverse 
profile, emittance, and bunch length is non-trivial.  The 
standard methods, such as OTR screens, scintillation 
beam profile monitors and conventional wire scanners are 
inapplicable, as the impact of a MW-grade electron beam 
would destroy any target.  One promising non-degradable 
approach for a high average current beam diagnostic is a 
laser wire scanner (LWS), which operates by intercepting 
an electron beam with a laser beam and counts the 
Compton scattered photons as a function of the laser 
position [3].  This technique was initially developed in the 
context of multi-GeV colliders [4,5,6], but has also found 
practical applications in the Thomson regime at softer 
energies [7].  The two LWS methods employed to date 
utilize either a continuous wave (CW) mode [8,9] for 
storage rings, or a high power single pulse interaction [10] 
for linacs.  However, a direct application of either one of 
these approaches is not optimal for the diagnostics of 
short bunch length electron beams with MHz repetition 
rate, such as in ERLs [11,12].  In CW LWS regime, most 
of the laser power would be lost in the intervals between 
the bunches.  A single-pulse operating mode mandates 
special care in handling the optical components to endure 
high energy density laser pulses, introducing an 
unnecessary complexity into the LWS system.  To address 
these limitations, RadiaBeam Technologies is developing 
a stand alone, flange-to-flange, 3-D LWS system that is 
relatively inexpensive and optimized for ERL diagnostic 
needs.  The technical design of such system is complete 

and discussed in this manuscript. The near term 
experimental plans include building, installation and 
commissioning of the prototype LWS system at 
Brookhaven National Laboratory (BNL) ERL, a facility 
presently under construction with the mission to perform 
electron cooling of the Relativistic Heavy Ion Collider 
(RHIC) [13,14].  Eventually, the goal of this effort is to 
develop an LWS system available for a variety of high 
duty cycle electron beam facilities as a commercial 
product with a minor amount of custom modifications. 

LWS SYSTEM LAYOUT 
A schematic diagram of the LWS measurement system is 
illustrated in Fig. 1  An electron beam is intercepted by a 
laser beam, and then deflected with bending magnets, 
while the scattered photons propagate from the interaction 
point downstream into the X-ray detector.  The laser beam 
can be scanned across the electron beam horizontally, 
vertically and longitudinally to obtain a projected 
transverse beam profile in two planes, and a current 
profile, respectively (the latter is meaningful only when 
the electron beam bunch length is significantly longer 
than the duration of the laser pulse).  Following Ref. [15], 
the LWS system’s components can be separated into the 
following four subsystems:  
• the laser source;  
• an optical transport and manipulation system; 
• the interaction region, including optics and the 

vacuum chamber;  
• and a scattered X-ray detector system. 

To maximize Compton photons count, a laser beam must 
always temporally overlap with the electron beam, and 
thus be externally mode locked to the RF clock, to 
synchronize the laser pulse to the electron beam over 
many pulses, with the minimal shot-to-shot temporal 
jitter.  The optical transport system has to offer fast 
feedback and dynamic correction on the laser beam’s 
position and envelope properties to allow for a 3-D scan 
that is fast enough to obtain single axis measurements 
within a one-minute time frame.  The interaction region 
has to include electron beam position diagnostics and an 
impedance-shielding cage to reduce wakefields and avoid 
mode trapping.  Finally, for the soft electron energies, the 
X-ray detector has to be in-vacuum, and offer the means 
of achieving a good signal over noise ratio in the 
environment of a significant bremsstrahlung X-ray 
background. 
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CONCLUSION 
RadiaBeam Technologies is developing an inexpensive 

laser wire scanner as a non-degradable diagnostics for 
high average power electron beams.  The design of the 
system has been completed, and a prototype 
commissioning is planned at BNL ERL facility in 
H1’2011.  
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