
JMAD - INTEGRATION OF MADX INTO THE JAVA WORLD

K. Fuchsberger, V. Baggiolini, R. Gorbonosov, W. Herr, V. Kain, G. Müller,
S. Redaelli, F. Schmidt, J. Wenninger, CERN, Geneva, Switzerland

Abstract

MADX (Methodical Accelerator Design) is the de-facto
standard software for modeling accelerator lattices at
CERN. This feature-rich software package is implemented
and maintained in the programming languages C and FOR-
TRAN. Nevertheless the controls environment of modern
accelerators at CERN, e.g. of the LHC, is dominated by
JAVA applications. A lot of these applications, for example
for lattice measurement and fitting, require a close interac-
tion with the numerical models, which are all defined by the
use of the proprietary MADX scripting language. To close
this gap an API to MADX for the JAVA programming lan-
guage (JMad) was developed. The current implementation
provides access to a large subset of the MADX capabilities
(e.g. twiss - calculations, matching or querying and set-
ting arbitrary model parameters) without any necessity to
define the models in yet another environment. This paper
describes the design of this project as well as the current
status and some usage examples.

MOTIVATION
Since MADX [1] is the de-facto standard software for the

design of particle accelerator lattices at CERN it is used
by a very large community and there exist lattice models
for many accelerators at CERN like the SPS, LHC and the
transfer lines in between which are regularly maintained
and updated. MADX is per design not a library but a stan-
dalone software with its own proprietary scripting language
which is used to define the models and perform simulation
tasks. Although this MADX-language contains many ele-
ments of a scripting language (like loops or if/else state-
ments) it is by no means (and never was intended to be) a
full programming language with custom libraries. There-
fore the necessity arises to create MADX input files and
postprocess output data with other tools, especially when
doing complex simulation tasks. The classical way of using
MADX from a higher level programming language other
then MADX scripting is:

1. Create a input file for MADX (ASCII file) contain-
ing model definition calls, input parameters and com-
mands to export the results.

2. Call MADX with the created input file.
3. Wait until MADX terminates.
4. Parse the MADX output files.
5. Postprocess the data (e.g. plot).

Although this can be easily done because of the highly
configurable MADX text file output features it has many
disadvantages, like e.g.:

• Creating MADX files by simply composing strings as
demanded by the application is very error-prone and
makes the application code very dependent on the
MADX scripting language as well as on the model in
use.

• Running MADX with different input files requires to
start and stop MADX every time. Since this also re-
quires to load the sequence (model definition) every
time this becomes a very time consuming procedure,
especially when many of such iterations are needed
(e.g. for fitting purposes).

• Every application developer ends up in implementing
its own MADX parser.

All these disadvantages can be avoided if steps 1 to 4
are encapsulated in a dedicated software package with a
well defined interface for the higher level programming
language. All the communication can then be done in the
language-typical way which is normally (at least in the case
of JAVA) compiler checked and type safe. Even the starting
an stopping of MADX can be avoided by keeping a running
instance with the actual model status in memory.

The JAVA programming language was chosen for the
first implementation of this API simply because most of
the existing accelerator controls software is written in Java.
Meanwhile, also a Python implementation of such an API
based on the same principles (PyMad) is under develop-
ment.

DESIGN

Figure 1 shows the key components of the JMad design.
They are described in some more detail in the following.

JMad Service

The main facade component for an application which is
using the API is the interface JMadService. The key re-
sponsibility of this interface is to find available model def-
initions and create model instances from these definitions.
The following description will focus on these two key re-
sponsibilities in the following, although a lot of additional
functionality is provided by this service.

Models

A model is the key component of JMad. It is represented
by the JMadModel interface. Each JMadModel instance is as-
sociated to one dedicated MADX process. The JMadModel

interface provides JAVA methods to act on the model (e.g.
run a twiss calculation, get/set strength values and many
more) which are passed on to the MADX process.

Proceedings of IPAC’10, Kyoto, Japan MOPEC006

01 Circular Colliders

A01 Hadron Colliders 465



Figure 1: Overview of JMad key components

Model Definitions

Although a model can be created simply from scratch
by creating a new instance and calling certain methods one
by one, the proposed (and most convenient) way is to use
predefined model definitions. In the API, a model defini-
tion is represented by the JMadModelDefinition interface.
Instances thereof contain all the information which is nec-
essary to initialize the MADX process (e.g. all the required
sequence- and strength-files) as well as available options
which are possibly selectable by the user/application (like
available sequences, ranges or optics).

Predefined model definitions stored in xml files which
contain only the minimum necessary information. The de-
sign goal here was to profit as much as possible from the
MADX scripting language and as a consequence being able
to reuse as much as possible from existing MADX-files. As
a consequence these xml model definitions only act as a
link between MADX-scripts and are easily understandable
and maintainable by conventional MADX users.

JMad contains an auto-detection mechanism for such
model definitions. This mechanism searches for model def-
initions contained in the JAVA class path in a distinct pack-
age. This makes it very easy to extend the available model
definitions: A new model definition file must simply be
placed in the correct package on the classpath, either as
a simple file or inside a jar. Model definition xml files can
also be packaged inside a zip file, together with all required
MADX files. This is very useful e.g. to archive model defi-
nitions or to pass them on to other MADX users.

IMPLEMENTATION DETAILS

Communication with MADX

Figure 1 shows that the object which is responsible for
the direct communication with MADX is an instance of
JMadKernel. A kernel takes care of its own MADX pro-
cess and the related input-, output- and logging-files. Cur-
rently the communication is simply based on streams and
files: All the commands and input data are directly writ-
ten to the input stream of the MADX process by the kernel.
All MADX output data is redirected to files (mostly twiss
files) which are parsed by the kernel after the command
has finished. Although one could imagine more sophisti-
cated communication methods (e.g. compiling MADX as

a shared library and communicating via JNA) this method
was chosen for the first implementation because it works
with the existing MADX binaries and only depends on the
MADX scripting language (which is not supposed to change
very frequently) but not on MADX internals.

Each JMadModel is using its dedicated instance of a
JMadKernel. The communication between the model and
the kernel is done by special command objects whose re-
sponsibility it is to compose the correct command strings
for MADX.

Operating System Independence

Since MADX binaries are platform dependent it is evi-
dent that a library based on executing these binaries can
never be fully platform independent. The problem is cir-
cumvented the following way: Executables for different
operating systems are included in every JMad release. On
startup of the JMad service, the correct binary for the oper-
ating system is extracted to a temporary directory and run
from there whenever needed. Currently the operating sys-
tems Windows, Linux and Mac OS X are supported.

USAGE EXAMPLES

To illustrate the usage of the API and introduce some of
the features, some simple JAVA code examples are shown
in the following.

For example, a typical way to set up a JMadModel is
shown in listing 1: First a new service is created (Typi-
cally an application would use only one such service). This
service is then used to find a model definition named ”ti2”
and create a model. After starting the model (model.init
()), it is ready to be used. When finishing the work with
the model, model.cleanup() should be called to close all
log files and end the corresponding MADX process.

Listing 1: model setup example

/* create a new JMad service */
JMadService jmadService = JMadServiceFactory.

createJMadService();

/* find a model definition */
JMadModelDefinition modelDefinition =

jmadService.getModelDefinitionManager().
getModelDefinition("ti2");

/* create the model */
JMadModel model = jmadService.createModel(

modelDefinition);
model.init();

/* do something with the model */

/* finally do a cleanup */
model.cleanup();

Although JMad also offers a lower abstraction layer
which provides more direct (MADX-like) access to the
model, the recommend abstraction layer to use is a full
JAVA representation of the machine which is simulated.

MOPEC006 Proceedings of IPAC’10, Kyoto, Japan

466

01 Circular Colliders

A01 Hadron Colliders



Every machine-element (as defined in a MADX sequence)
is modeled as a separate JAVA class with appropriate prop-
erties and accessor methods, e.g. Bend, Quadrupole or
Monitor. The actual optics values (for the whole machine
or for single elements) can be retrieved by separate meth-
ods. Listing 2 demonstrates some of these capabilities.

Listing 2: retrieving optics values

Range activeRange = model.getActiveRange();

/* retrieve the actual optics */
Optic optic = model.getOptics();

/* retrieve some optics values */
List<Double> betaxValues = optic.getValues(

MadxTwissVariable.BETX,
activeRange.getElements());

/* get an element by name */
Quadrupole aQuad = (Quadrupole) activeRange.

getElement("MQIF.20400");

/* change a quad strength by 10 percent */
aQuad.setK1(aQuad.getK1() * 1.1);

/* IMPORTANT:

* refetch optics after changing strengths,

* it has changed! */
optic = model.getOptics();

APPLICATIONS

JMad is used by different applications at the moment, of
which some examples are given in the following:

To analyze measurement data for the LHC and perform
fits to kick-response-, dispersion-, multiturn- and simple
trajectory data a analysis tool called Aloha [3] was created.
This tool uses JMad heavily to vary model parameters and
find best fit solutions. During the development of Aloha
also a graphical user interface to display model data was
created. An example screenshot of this GUI is shown in
Fig. 2, showing the beta- and dispersion functions of the
TI 8 transfer line and LHC sector 78.

Figure 2: Simple GUI for JMad

The LHC Online Model [2] uses JMad functionality, es-
pecially the feature to define a machine and its optics in a
JMadModelDefinition, as a backbone to calculate optics
functions, upload them to LSA (LHC software architec-
ture) and to create knobs. Additionally, the online model
can extract power converter settings from LSA and directly
pass them on the JAVA-level to JMad to predict aperture
margins during aperture measurements (Fig. 3) or scan over
generated settings of squeeze beam processes for the LHC,
to verify the settings and check / predict the variation of ma-
chine parameters, like tune, chroma, beta beat or β* be-
tween the matched optics points.

SUMMARY AND OUTLOOK
In its current version JMad offers the key features for

using existing MADX models from JAVA, like changing
model parameters and calculate optics values. JMad is cur-
rently used for the LHC online model and various optics-
analysis tools. It is the key component to link any JAVA ap-
plication (like the LHC controls software) in a natural way
to MADX accelerator models, which are available for al-
most all accelerators at CERN. Also a simple GUI is avail-
able which provides editing- and plotting capabilities and
can easily be integrated into other applications.

The next goals for JMad development are stabilizing the
API and the model-definition format. Further plans include
extending the interface for more MADX functionality, like
e.g. tracking.

Figure 3: JMad calculated orbit excursions from setting
extraction, beam envelope calculated from measurements
(emittance, beta beat) inside the aperture model.

REFERENCES

[1] W. Herr, F. Schmidt “A MAD-X Primer”, CERN AB Note,
CERN-AB-2004-027-ABP.

[2] G. Müller et al., “The Online Model for the Large Hadron
Collider”, these proceedings.

[3] K. Fuchsberger, “Aloha - Optics studies by combined kick-
response and dispersion fits”, CERN BE-Note-2009-020 OP.

Proceedings of IPAC’10, Kyoto, Japan MOPEC006

01 Circular Colliders

A01 Hadron Colliders 467


