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JEDI Introduction
Principle of EDM Search [1]

Particle spin alignment along momentum (frozen spin)

Radial E-field: torque on spin – rotation out of ring plane  



15. Oktober 2015 Institut für Kernphysik (IKP) Folie 3

JEDI Introduction
Frozen Spin Technique [1]

Left: a polarized charged particle (beam) in a storage ring 

Right: fixing the horizontal spin along the momentum direction    
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JEDI Introduction
Quasi-Frozen Spin (QFS) Technique

Thomas-BMT equation
𝑑𝑆
𝑑𝑡 = 𝑆× Ω()( + Ω+)(

where

Ω()( =
𝑒
𝑚 𝐺𝐵 − 𝐺 −

1
𝛾3 − 1

𝐸×𝛽
𝑐

Ω+)( =
𝑒
𝑚
𝜂
2
𝐸
𝑐 + 𝛽×𝐵

Quasi-Frozen Spin condition

𝛾𝐺Φ: =
1
𝛾 1 − 𝐺 + 𝛾𝐺 Φ+

where Φ: and Φ+ are the angles of momentum rotation in 
magnetic and electric bend parts of the ring correspondingly.
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JEDI

Lattice parameters
Length: 16667 cm
Particles: deuterons
Kinetic energy: 270 MeV
Lattice reference: Yu. Senichev et al., “Quasi-Frozen 
Spin Method for EDM Deuteron Search”, 
Proceedings of IPAC’2015, Richmond, VA (2015). 

Lattice structure
• 4 straight sections (light grey)
• 4 magnetic sections (blue)
• 4 electrostatic sections (green)
Decoherence order suppression
• RF cavity: 1st and partially 2nd

order
v by mixing the particles relatively to the 

average field strength, and therefore, 
averaging out ∆𝛾𝐺 for each particle

• Sextupoles: remaining 2nd order 
component

v which is due to average of ∆𝛾𝐺 being 
different for each particle

QFS Lattices
Codename “Senichev 6” Lattice
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JEDI

Lattice parameters
Length: 14921 cm
Particles: deuterons
Kinetic energy: 270 MeV

Lattice structure
• 4 straight sections (light grey)
• 4 magnetic sections (blue)
• 4 E+B sections (orange)
Decoherence order suppression
• RF cavity: 1st and partially 2nd

order
• Sextupoles: remaining 2nd order 

component

E+B Wien Filter elements are used 
instead of the electrostatic 
deflector. 
Purpose:
• remove corresponding 

nonlinear components
• simplify from engineering 

perspective

QFS Lattices
Codename “Senichev E+B” Lattice
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JEDI QFS Lattices

System analysis
• Analytic relations (quadratic, etc.): see the general character of the 

system
• Numerical methods (system tracking in COSY Infinity): have final 

understanding of which orders are needed for spin decoherence 
less than 1 rad in 1000 s / 1 billion turns

Developed solution
• COSY Infinity programs

• Code for manual and automatic optimization of lattice
• Choice of three objective functions
• One differential algebra (DA) objective function

• Spin tracking code
• Output data to files for storage and further processing

• Mathematica programs
• Store certain results of COSY runs in an organized way
• Process and QA check that data
• Generate reports that aggregate processed data in plot 

and table format
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JEDI Fringe Field of 
the Electrostatic Deflector [4]

• Fringe fields of semi-infinite capacitors with solid metal plates were 
modeled in MATLAB using Schwarz-Christoffel Toolbox v.2.3 [5] 
and analyzed in Mathematica.

• Results were compared with those obtained for finite rectangular 
solid metal capacitors in Coulomb by H. Soltner (FZJ, Germany).
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JEDI Fringe Field of
the Electrostatic Deflector [4]

“Senichev 6” lattice electrostatic deflector:
• Semi-infinite capacitor
• Plate thickness 10% of distance between plate and midplane
• Rounded edges

Enge
Coefficient Value

h0 1.0614024399605924

h1 1.6135741290714967

h2 -0.9401447081042862

h3 0.4781500036872176

h4 -0.14379986967718494

h5 0.017831089071215347
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JEDI Manually optimized sextupole 
strengths

v 20000 turn spin tracking in 𝑥 − 𝑎, 𝑦 − 𝑏, and 𝑙 − 𝛿 planes, RF 
cavity on/off, various RF cavity frequencies and voltages

v Objective function represents spin decoherence
v Each curve shows manual optimization by a sextupole strength
v Compared with 𝑥 − 𝑎 plane, in 𝑦 − 𝑏 plane

v curves are more parabolic
v objective function values tend to be lower
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JEDI Automatically optimized sextupole 
strengths

v Start from manually optimized sextupole strengths values
v Further optimize them using LMDIF optimizer
Ø When RF on, curves are typically bounded by symmetric slanted lines
v On the right plot, the thickness of the optimums is shown on 𝑙𝑜𝑔 − 𝑙𝑜𝑔

scale
Ø Considering the accuracy, with which the physical sextupole strengths 

can be set, the thickness is acceptable
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JEDI
Period of spin precession and 

longitudinal oscillation
(http://accelconf.web .cern .ch/A ccelConf/IPA C2013/papers/wepea036.pdf)

v Spin decoherence ∆𝛾𝐺 is order-wise proportional to orbit lengthening 
∆𝑙/𝑙

v In the example above, RF cavity is set to 5.2 MHz 100kV
Ø Period particle orbit in 𝑙 − 𝛿 plane is approximately 88 turns near ref. 

particle
v Therefore, the period of energy averaging ∆𝛾𝐺 is 88 turns
v The larger the period of this averaging, the larger the amplitude of 

oscillations caused by the RF cavity (cf. infra)
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JEDI
Period of spin precession and 

longitudinal oscillation
(http://accelconf.web .cern .ch/A ccelConf/IPA C2013/papers/wepea036.pdf)

v W/o RF cavity, spin motion would have a period proportional to 
∆𝛾𝐺~10GH, where ∆𝛾~10GI and 𝐺 = 0.14

v For good energy averaging, the order of RF frequency must be 1-2 
times higher than ∆𝛾𝐺

v RF cavity frequency in the lattice is ~2 orders faster ⟹ good 
energy averaging
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JEDI Separatrix in the 𝒍 − 𝜹 plane

v 20000 turn spin tracking in 𝑙 − 𝛿 plane
v Separatrix for the motion of particles
v In the example above, RF cavity is set to 1MHz 50kV
Ø Order of 𝛿-variance: 10G3
Ø Size of the separatrix: 5×10GI
Ø Period of the energy variance averaging: 20 turns
v Spin precession frequency: 10GH
v Therefore, energy averaging due to RF cavity is ~2 orders  faster
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JEDI

v At 20000 turns, the order of spin decoherence was not sufficiently low to be 
satisfactory at that point of analysis

v So we have observed what happens to the objective function as a function of 
number of turns

v We plot the objective function against number of turns from 20000 to 420000 turns 
with the step of 20000

Ø We note that significant minima occur periodically
Ø In 𝑥 − 𝑎 and 𝑦 − 𝑏 planes for most sextupole strengths: indication that objective 

function remains in the same range

(Number of Turns - 20000)/1000

Time evolution of spin decoherence 
measure: “Senichev 6.2” 𝑥 − 𝑎 420k turns 

(with RF cavity)
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JEDI

v We plot evolution of 𝛼-amplitude plots against number of turns from 20000 to 
420000 turns

Ø For most sextupoles, oscillations seem to be bounded by two slanted lines as 
seen in the first picture

Ø Plot for SFP2 was exceptional due to low dispersion at the sextupole
v This is because RF cavity introduces forced oscillation into the system
v We could attempt to reduce its amplitude by decreasing RF cavity’s voltage 

and decreasing its frequency by about an order, but we simply deleted SFP2

Time evolution of spin decoherence 
measure: “Senichev 6.2” 𝑥 − 𝑎 420k turns 

(with RF cavity)
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JEDI
Time evolution of RMS

of spin decoherence: fringe fields vs. no 
fringe fields

v Spin decoherence as a function of number of turns is often similar in fringe 
field modes 0 (no fringe fields) and 3 (most accurate).

v Sometimes, there is spin decoherence growth in FR 3 but no growth in FR 0.
v Previous plots were FR 0; starting from this slide we specify FR mode.
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JEDI
Time evolution of RMS
of spin decoherence:

“Senichev 6.2” 𝑥 − 𝑎 420k turns

v The RF cavity often limits spin decoherence to a range, at least for the number 
of turns of the order of 5×10Q.

FR 0 FR 3
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JEDI
Time evolution of RMS
of spin decoherence:

“Senichev 6.2” 𝑥 − 𝑎 1M turns

v For some sextupoles and RF cavity settings, spin decoherence goes out of 
range and starts to increase after ~10R turns

v We have to find a set of RF cavity settings, sextupoles, and sextupole settings 
such that spin decoherence is sufficiently small in all planes, even if there is 
such an increase

FR 0 FR 0
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JEDI
Time evolution of RMS
of spin decoherence:

“Senichev 6.2” 𝑙 − 𝑑 420k turns

FR 3

FR 3

FR 3 FR 3

High nonlinearities introduces by a sextupole family can cause decoherence 
growth for some RF cavity settings.
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JEDI
Time evolution of RMS
of spin decoherence:

“Senichev E+B” 𝑥 − 𝑎 420k turns

v Again, the RF limits the spin decoherence to range, at least for the number of 
turns of the order of 5×10Q.

v High nonlinearities introduced by a sextupole family can cause decoherence 
growth for some RF cavity settings.

FR 3

FR 3

FR 3
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JEDI
Time evolution of RMS
of spin decoherence:

“Senichev E+B” 𝑙 − 𝑑 420k turns

In this case, sextupole family behavior was practically the same.

FR 3 FR 3
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JEDI Conclusion

Ø At present, calculations indicate that the use of RF cavity 
and sextupoles alone in the considered QFS lattices may 
be sufficient to optimize the spin decoherence to less than 1 
rad in 1 billion turns

Ø We will continue to work on optimization spin decoherence 
using the RF cavity and the sextupole strengths in all 
planes simultaneously

Ø We will track the obtained solution for a larger number of 
turns

Ø We will try to obtain an improved objective function based 
on tracking of differential algebra (DA) vector-valued 
particle rays.

Ø We will try suppressing decoherence using octupoles in 
addition to sextupoles
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