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Abstract

Traditionally most large storage rings for nuclear and
high energy physics use magnetic elements for focusing and
bending. However, recent interest in the study of the possi-
ble existence of an electric dipole moment (EDM) of pro-
tons, deuterons and others requires the use of electrostatic
elements in rings, and would even greatly benefit from the
use of purely electrostatic lattices without any magnetic el-
ements. Indeed the classical Thomas-BMT equation de-
scribing the motion of the spin due to a magnetic dipole
moment coupling to magnetic fields can be augmented to
analogously also describe the effects of a possibly present
electric dipole moment coupling to electric fields, and the
additional term would lead to detectable effects. We dis-
cuss how to address and resolve various problems appearing
in the simulation of such lattices. We begin with methods
that allow the computation of nonlinear fields of elements,
and in particular their fringe fields, using DA-based PDE
solvers, and proceed to the computation of high-order trans-
fer maps, typically up to order 7 or 9. We also discuss a
problem arising in these rings, especially the possible non-
conservation of the particle energies.

THE DA PDE FIELD SOLVER

The electric and magnetic rigidities y. = pv/gq and
Xm = p/q describe the strengths of coupling to the elec-
tric and magnetic fields [1]. Due to the additional factor v,
the practically achievable bending in electrostatic elements
is less than in magnetic elements, which limits their use
to moderate energies, and their desired use in storage ring
EDM studies [2] represents a new frontier. Beam dynam-
ics simulations of systems containing electrostatic elements
encounter various undesirable effects that do not arise in
magnet based systems. We start the discussion with a dif-
ferential algebra (DA) based field solver, which provides an
efficient mechanism to compute 3D nonlinear fields while
computing a high-order nonlinear transfer map [3].

We outline the principle of the DA PDE solver using a
general form of the Laplace equation. We first bring the
equation into a fixed point form:
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where a;, b;, ¢; are functions of x, y, z. Viewing it as a
DA fixed point problem, we provide the boundary condi-
tions Vl,—o and (b7 - 8V/6y)|y:0 as DA quantities, which
represents the field description in the midplane, as analyti-
cal functions of x and z. The right hand side is contracting
with respect to y in the DA framework [3], and we obtain
V as a function of x, y, z by calculating the equation in the
DA arithmetic iteratively in finitely many steps. The field
components can be obtained also by DA arithmetic as the
first derivatives of V' [3,4].
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Figure 1: The normalized profile of the fringe field falloff of
an electrostatic deflector consisting of two infinitely long ca-
pacitor plates, computed by conformal mapping techniques.
The effective field boundary is marked by the vertical line.
The electric field falls off very slowly on the outside (right-
ward). s: arclength, D = 24 : full aperture.
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Figure 2: The field distribution in the entrance fringe region
of a cylindrical electrostatic deflector; the default falloff,
d =5cm, R =24.7 m, E, is multiplied by 10* for emphasis.
The reference trajectories by fringe field modes FR 3 and
FR 2.5 are shown. “X” marks the entrance position of the
hard edge model (no fringe field).
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One carefully attempts to keep the main field of an elec-
tromagnetic element constant along the reference trajectory.
However in the fringe field region, unavoidable nonlinear-
ity in the motion and hence aberrations are introduced. Fig-
ure 1 shows an example fringe field falloff in the midplane
along the reference orbit arclength s. The fringe field nonlin-
earity affects particles at different locations from reference
orbit differently due to the curvature of field lines. The DA
PDE solver is utilized to obtain the full 3D fringe fields from
a suitable analytical function of only s describing the field
falloff along the reference orbit in the midplane. The fields
of the entire element now can be obtained via the DA PDE
solver by supplying the necessary boundary conditions, for
example, the DA multiplication of the s-dependent Enge
function and the midplane main field. The field shown in
Fig. 2 is computed in such a way.

TRANSFER MAP COMPUTATION

Once the fields are known, the equations of motion deter-
mine the final status of the coordinate variables Z '+ depend-
ing on the initial status Z;. Except for simplified models of
electromagnetic elements, one may resort to numerical inte-
gration of the differential equations. Using the DA method,
one can readily obtain a nonlinear high-order transfer map
Zf = M(Z-) including spin dynamics [3, 5] necessary for
the EDM studies. The DA PDE solver is the main mech-
anism to supply the 3D fields including the derivatives at
any position along the transfer map flow integration for non-
trivial electromagnetic elements in the code COSY INFIN-
ITY [6], and it frees the code from the need to rely on the
conventional field computation methods such as FEM and
BEM as well as subsequent numerical interpolation and nu-
merical differentiation.

In the hard edge model of the example cylindrical deflec-
tor in Fig. 2, the field is zero before the effective field bound-
ary z = 0, so the reference trajectory approaches from the
left and enters the deflector at (z, x) =(0,0). However in
practice, when considering the unavoidable fringe field, the
non-zero field before the boundary already bends the tra-
jectories of the particles. Even the reference trajectory be-
comes different from the ideal hard edge model; the green
dashed curve labeled “FR 2.5 shows the reference trajec-
tory when it approaches from far left at x = 0, traveling par-
allel to the z axis, having quite an offset from (0, 0) due to
the influence of the fringe field. This can have far reaching
consequences especially in electrostatic elements with their
generally slower field falloff, and in particular introduces
discrepancies in the resulting transfer maps [7].

The fringe field computation mode FR 2.5 in COSY IN-
FINITY calculates the transfer map along the reference tra-
jectory as described above. This is the easiest way to utilize
to treat nonlinear fringe fields, though the reference trajec-
tory throughout the element does not form the expected mir-
ror symmetry about the middle of the element. In order to
enforce this symmetry, one can first integrate the reference
orbit backwards from the middle of the element, and then
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shift and rotate the element to account for the resulting de-
viations. This is done in the mode FR 3, and the resulting
reference trajectory in the 22.5° deflector, which has an arc
length of ~ 10 m, is shown in the black curve in Fig. 2, re-
sulting in ~ 0.1 mm offset from the FR 2.5 case.

Besides the problem of the trajectory offset, there is an-
other major problem since particle optical elements with
fringe fields are usually described by three separate parts,
namely the entrance fringe field, the main field, and the exit
fringe field. In electrostatic elements, at the end of the en-
trance fringe fields there are nonzero potentials affecting
the particle’s energy. If this is followed by a shift or rota-
tion of the reference orbit to line up with the subsequent
main field, as is usually done, this leads to a discontinuity

Figure 3: The reference orbit of radius 1 m (dashed red)
and an orbit starting at the position displaced rightward by
0.4 m (blue). The system consists of 16 sectors. (left) In
the uniform magnets, the displaced orbit is circular with ra-
dius 1 m. (right) In the electrostatic spherical deflectors, the
displaced orbit is Keplerian elliptic if nonrelativistic.

Figure 4: Tracking particles long term through a 22.5° elec-
trostatic spherical deflector around the circular reference or-
bit with deflection radius 1 m (see Fig. 3) for 160,000 times
by (left) pushing through a high-order transfer map, (right)
integrating via an 8th order Runge Kutta integrator — this
figure and Figs. 5, 6. Particles are launched horizontally up
to xini = 0.4 m, and the x-a phase space motion is shown
for nonrelativistic (top) and relativistic (bottom) cases. |a|
reaches to 0.46.
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in the potential, and thus a violation of energy conservation.
While seemingly small, these effects can very detrimentally
build up in repetitive systems. Thus different from common
particle optical practice, the discussed fringe field computa-
tion modes FR 3 and FR 2.5 carry the computation through-
out the entire element including the entrance and exit fringe
field regions in a single operation.

A BENCHMARK EXAMPLE

Electrostatic deflectors, while presenting difficulties in
particle optical simulations, allow interesting and far-
reaching cross checks [6,7]. Here we study spherical de-
flectors in detail, where the electrostatic potential is oc 1/r,
so the system represents a Kepler problem. In the nonrel-
ativistic case, the motion returns to the exact original state
after one full revolution, independent of initial conditions.
Thus the transfer map of such a spherical deflector of 360°
is an identity map [7].

We perform a challenging long term tracking test based
on knowing that the field is radial and nonlinear oc 1/r% so
the nonrelativistic particles follow Kepler orbits. We pick a
circle with radius 1 m as the reference orbit, and consider
a system consisting of 16 of 22.5° deflectors as shown in
Fig. 3. We study the long term motion of displaced parti-
cles up to 0.4 m in the radial direction (xjpi; Fig. 4) and in
the vertical direction (yini; Figs. 5, 6), each having 10 equi-
distantly displaced particles. We note that a particle with
any radial position displacement follows a 1 m radius circle
in uniform magnets (left, Fig. 3), and follows a Kepler el-
lipse in the spherical electrostatic deflectors (right, Fig. 3).

We performed tracking through the electrostatic spheri-
cal deflectors for 160,000 iterations, corresponding to a to-
tal of 10,000 orbital revolutions, by the transfer map method
with and without symplectification [8], and compared the
performance with the numerical integrations using a highly
accurate 8th order Runge Kutta (RK) integrator with auto-
matic step size control. In case of the xjy; test, the majority
of the interesting aspects is seen in the x-a phase space plots
corresponding to the radial motion. On the other hand, the
Yini test shows interesting aspects in both the x-a and the
vertical y-b phase spaces. To represent the motion cover-
ing the range of this stress test, nonlinear transfer maps of
high order are necessary. In Figs. 4, 5, 6 we used maps of
order 19, and no visible difference is observed compared
to the plots by RK. One tracking run of 160,000 elements
required ~ 400 s by RK. The corresponding computation
by the transfer map method requires the computation of a
high order transfer map for one 22.5° deflector in the be-
ginning, and the remaining task is to apply the transfer map
repeatedly for 160,000 times. This is very fast using the DA
method; the 2D x;jp; test takes ~ 7 s, while the 4D yjy; test
takes ~ 140s. To cross check the results, we also performed
the transfer map tracking computations with symplectifica-
tion [8], where the xjn; test takes ~ 40 s and the yjy; test
takes ~ 950 s, and it results in complete agreement in the
resulting plots.
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Nonrelativistic particles follow closed Kepler ellipses, so
each of 10 displaced particle leaves 16 breadcrumbs at the
exactly same 16 phase space positions in every revolution.
If the motion were linear, all breadcrumbs would line up
straight and symmetrically. However, in reality the motion
is very nonlinear, resulting in the curved structure seen in
the top plots in Fig. 4. The plots in the yjp; test look straight-
forward at first glance, but a careful inspection reveals the
complication due to the 3D elliptic motion. For example,
the top plots in Fig. 5 stretch out leftward less than they do
on the right. In the relativistic case, the orbits are no longer
closed due to precession of perihelion resulting from the rel-
ativistic change of mass during the revolution, correspond-
ing to Einstein’s precession of the perihelion of Mercury.
The bottom plots in Fig. 5 show the effect of this preces-
sion, and coupling effect arise in the x-a plots in Fig. 6.
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Figure 5: Particles are launched vertically up to yjp; = 0.4 m.
The y-b projection of the motion is shown for nonrelativis-
tic (top) and relativistic (bottom) cases. |b| reaches to 0.43.
(left) map, (right) RK.

Figure 6: Particles are launched up to yi5i = 0.4 m as in
Fig. 5. The x-a projection of the motion is shown. x and a,
initially 0, reach to the range —0.15 < x < 0.02, |a| < 0.13
(top, nonrelativistic), and —0.15 < x < 0.08, |a| < 0.15
(bottom, relativistic). (left) map, (right) RK.
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