

Electromagnetic characterization of materials for the CLIC Damping Rings and high frequency issues

Eirini Koukovini-Platia CERN, EPFL

Acknowlegdements

G. De Michele, C. Zannini, G. Rumolo (CERN)

Outline

- Introduction
- Motivation
- Experimental method- simulations
- First results- testing simulations
- Conclusions- future planning- challenges

Introduction (I) CLIC: a future multi-TeV e⁺e⁻ collider

- Compact Linear Collider (CLIC)
- Allows the exploration of a new energy regime, in the multi-TeV range beyond the capabilities of today's particle accelerators

Introduction (II) Damping Rings

CLIC DR parameters	
Parameters	CLIC@3TeV
Energy [GeV]	2.86
Circumference [m]	427.5
Energy loss/turn [MeV]	4.0
RF voltage [MV]	5.1
Stationary phase [°]	51
Momentum compaction factor	1.3e-4
Damping time x/s [ms]	2/1
Number of dipoles/wigglers	100/52
Dipole/wiggler field [T]	1.0/2.5
Rend gradient [1/m ²]	-11
Bunch population [10 ⁹]	4.1
Horizontal normalized emittance [nm.rad]	456
Vertical normalized emittance [nm.rad]	4.8
Bunch length [mm]	1.8
Longitudinal normalized emittance [keVm]	6.0

- Small emittance, short bunch length and high current
- Rise to collective effects which can degrade the beam quality

Introduction (III) Collective effects

- Represent phenomena describing the evolution of a particle beam under the effect of self-induced forces
- Could lead to instabilities, tune shift, beam loss and emittance growth
- Determine the performance of an accelerator (by limiting the beam intensity or degrading beam quality)
- Study to ensure safe operation under nominal conditions
- Focus on impedance

To suppress some of those effects, coating will be used

- Positron Damping Ring (PDR): electron-cloud effects → <u>amorphous</u> <u>carbon (aC)</u>
- Electron Damping Ring (EDR): fast ion instabilities → need for ultra-low vacuum pressure → <u>Non-Evaporable Getter (NEG)</u>

Introduction (IV) Tools

HEADTAIL code

- Simulates single bunch collective phenomena associated with impedances (or electron cloud)
- Computes the evolution of the bunch centroid as a function of time over an adjustable number of turns
- ImpedanceWake2D
 - Computes the longitudinal and transverse wake functions of multilayer structures, cylindrical or flat
- CST Microwave Studio

Resistive Wall Vertical Impedance: Various options for the wigglers pipe

 \Rightarrow a-C necessary for e^{-} cloud mitigation

 \Rightarrow NEG for good vacuum

⇒Coating is "transparent" up to ~10 GHz

 \Rightarrow But at higher frequencies some narrow peaks appear

 \Rightarrow Important to define the contribution of the resistive wall

Single bunch simulations to define the instability thresholds

Mode spectrum of the horizontal and vertical coherent motion as a function of impedance

For zero chromaticity, the impedance budget is estimated at 7 $M\Omega/m$

Estimating the machine impedance budget with a 4-kick approximation

I kick \rightarrow broadband resonator (S_{kick}=Im)

2 kick \rightarrow **arc** (L=270.2m, 9mm, round, <bx>=2.976m, <by>=8.829m, S_{kick}=150m)

 A uniform coating of NEG, 2μm thickness, (σ=10⁶ S/m)was assumed around the ring made from stainless steel

The contributions from the resistive wall of the beam chamber were singled out for both the arc dipoles and the wigglers

3 kick → wigglers (L=104m, 6mm, flat, <bx>=4.200m, <by>=9.839m, S_{kick}=41.3m)

4 kick \rightarrow rest of the FODO (L=53.3m, 9mm, round, <bx>=5.665m, <by>=8.582m, S_{kick}=39.2m)

Estimating the machine impedance budget with a 4-kick approximation

Motivation

- Need to characterize the properties of the coating materials at high frequencies (CLIC), i.e. 500 GHz
- Characterize the electrical conductivity of NEG
- Combination of experimental method and EM simulations

TiZrV coating

Experimental Method (I)

Waveguide Method

- First tested at low frequencies, from 9-12 GHz
- Use of a standard X-band waveguide, 50 cm length
- Network analyzer
- Measurement of the transmission coefficient S_{21}

setup

X band Cu waveguide of 50 cm length

Experimental Method (II)

Copper waveguide

- First test: a pure copper (Cu) X band waveguide
- Measure the S₂₁ from 9-12 GHz

- Signals traveling in the waveguide experience loss due to the conductor resistance
- S₂₁ is related to the loss suffered in the transmission from one port to the other
- Cu is a very good conductor and the losses are small
- S₂₁ is related to the material conductivity

3D EM Simulations (I) CST Microwave Studio

- Software package for electromagnetic field simulations
- The tool Transient Solver also delivers as results the Sparameters
- ► CST is used to simulate the Cu waveguide (same dimensions as the ones used in the experiment → simulating the experimental setup)

3D EM Simulations and measurements (I)

- X band Cu waveguide, $\varepsilon_r = \mu_r = I$, σ is the (unknown) scanned parameter
- For each frequency from 9-12 GHz, the output result is the S₂₁ coefficient as a function of conductivity
- Combine with the measurement results $\rightarrow \sigma$ as a function of frequency

3D EM Simulations and measurements (II) Conductivity of Cu

Result from the intersection of measurements with CST MWS simulations

- Cu conductivity was estimated within the same order of magnitude with the known value
- Average is 5.91x10⁷ S/m
- Good agreement with the known value of 5.8x10⁷ S/m
- The attenuation is very sensitive to the errors because of the small losses (high conductivity of Cu)
- Despite this, the results were encouraging to continue with a coated waveguide

Experimental Method (III)

NEG coated Cu waveguide

- Same Cu waveguide used before is now coated with NEG
- Coating procedure
 - Elemental wires intertwisted together produce a thin Ti-Zr-V film by magnetron sputtering
 - Coating was targeted to be as thick as possible (9 µm from first x-rays results)

Experimental Method (IV)

NEG coated Cu waveguide

Measure the S₂₁ from 9-12 GHz

- S₂₁ results indicate that the skin depth is small enough compared to the coating thickness
- Allows the EM interaction with the NEG

3D EM Simulations and measurements (III) Conductivity of NEG

- Real thickness profile \rightarrow unknown
- First indication from x-rays
- 2 scenarios
 - ▶ skin depth << thickness → losses only from NEG → $\sigma_{\rm NEG}$
 - ▶ simulation: infinite thickness of NEG \rightarrow upper limit
 - ▶ skin depth ~ thickness → losses from NEG and Cu → σ_{NEG}
 - ▶ simulation: NEG-coated (9µm) Cu waveguide

3D EM Simulations and measurements (IV) Conductivity of NEG

- Upper limit for the conductivity of NEG in this frequency range
- Preliminary results

- Errors
 - Experimental method (stainless steel waveguide)
 - Benchmark CST MWS coating simulations

First tests of the CST MWS simulations (I)

- Check the results reliability of coating simulations
- First tests

Compare simulations

I. <u>A Cu waveguide NEG coated of 100 µm (2 materials)</u>

Assuming $\sigma_{\text{NEG}} = 2 \times 10^6$ S/m, the skin depth is varying from 3.9-3.2 µm for 8-12 GHz

$$\delta = \sqrt{\frac{2}{\mu\omega\sigma}} \approx 503 \sqrt{\frac{1}{\mu_r f\sigma}}$$

•skin depth << 100 μ m thickness \rightarrow EM interaction only with NEG

2. <u>A waveguide from NEG (I material)</u>

First tests of the CST MWS simulations (II)

Compare the results from simulations for the 2 cases

First tests of the CST MWS simulations (III)

- <u>Simulate different values of NEG thickness and check the</u> <u>output of simulations</u>
 - From 8-12 GHz, skin depth varies from 3.9-3.2 μm (σ_{NEG} = 2x10⁶ S/m)
 Simulate thickness from 1-20 μm

First tests of the CST MWS simulations (IV)

Compare results for different NEG thickness from 1-20 µm

Summary

 \Rightarrow NEG (Non Evaporable Getter)/ aC (amorphous Carbon) coating is necessary for good vacuum and to fight e⁻ cloud in the EDR and PDR of CLIC

 \Rightarrow Unknown material properties at high frequencies

 \Rightarrow Combine experimental results with CST simulations

 \Rightarrow Powerful tool for this kind of measurements

 \Rightarrow The waveguide method combined with CST EM simulations was tested at frequencies from 9-12 GHz for a Cu NEG coated waveguide

 \Rightarrow The results were encouraging

 \Rightarrow Upper limit for the NEG conductivity at this frequency range

 \Rightarrow Measurements for a stainless steel waveguide will take place (error of the method)

 \Rightarrow CST MWS simulations will be benchmarked (error of simulations)

 \Rightarrow Measurements on a different coating? aC?

Challenges...

Measure properties at high frequencies...

- Up to 500 GHz/ 500 GHz Network analyzer (EPFL)
- Very short waveguides, Y-band (0.5 x 0.25 mm)
- Challenges
 - Manufacture of the small waveguide
 - Coating technique
 - Profile measurements
- Simulation
 - Non-uniform coating

Acknowledgements

- A.T. Perez Fontenla
- G.Arnau Izquierdo
- S. Lebet
- M. Malabaila
- P. Costa Pinto
- M.Taborelli

Thank you for your attention!