Electromagnetic characterization of materials for the CLIC Damping Rings and high frequency issues

Eirini Koukovini-Platia
CERN, EPFL

Acknowledgements
G. De Michele, C. Zannini, G. Rumolo (CERN)
Outline

- Introduction
- Motivation
- Experimental method- simulations
- First results- testing simulations
- Conclusions- future planning- challenges
Introduction (I)
CLIC: a future multi-TeV e^+e^- collider

- Compact Linear Collider (CLIC)
- Allows the exploration of a new energy regime, in the multi-TeV range beyond the capabilities of today's particle accelerators

- DR will deliver the desired ultra low emittances
- EDR - PDR
Introduction (II)

Damping Rings

- **CLIC DR parameters**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CLIC@3TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy [GeV]</td>
<td>2.86</td>
</tr>
<tr>
<td>Circumference [m]</td>
<td>427.5</td>
</tr>
<tr>
<td>Energy loss/turn [MeV]</td>
<td>4.0</td>
</tr>
<tr>
<td>RF voltage [MV]</td>
<td>5.1</td>
</tr>
<tr>
<td>Stationary phase [°]</td>
<td>51</td>
</tr>
<tr>
<td>Momentum compaction factor</td>
<td>1.3e-4</td>
</tr>
<tr>
<td>Damping time x/s [ms]</td>
<td>2/1</td>
</tr>
<tr>
<td>Number of dipoles/wigglers</td>
<td>100/52</td>
</tr>
<tr>
<td>Dipole/wigglar field [T]</td>
<td>1.0/2.5</td>
</tr>
<tr>
<td>Bend gradient [1/m²]</td>
<td>1.1</td>
</tr>
<tr>
<td>Bunch population [10⁹]</td>
<td>4.1</td>
</tr>
<tr>
<td>Horizontal normalized emittance [nm.rad]</td>
<td>456</td>
</tr>
<tr>
<td>Vertical normalized emittance [nm.rad]</td>
<td>4.8</td>
</tr>
<tr>
<td>Bunch length [mm]</td>
<td>1.8</td>
</tr>
<tr>
<td>Longitudinal normalized emittance [keV.m]</td>
<td>6.0</td>
</tr>
</tbody>
</table>

- **Small emittance, short bunch length and high current**
- **Rise to collective effects which can degrade the beam quality**
Introduction (III)
Collective effects

- Represent phenomena describing the evolution of a particle beam under the effect of self-induced forces
- Could lead to instabilities, tune shift, beam loss and emittance growth
- Determine the performance of an accelerator (by limiting the beam intensity or degrading beam quality)
- Study to ensure safe operation under nominal conditions
- Focus on impedance

To suppress some of those effects, coating will be used

- **Positron Damping Ring (PDR):** electron-cloud effects \rightarrow amorphous carbon (aC)
- **Electron Damping Ring (EDR):** fast ion instabilities \rightarrow need for ultra-low vacuum pressure \rightarrow Non-Evaporable Getter (NEG)
Introduction (IV)
Tools

- HEADTAIL code
 - Simulates single bunch collective phenomena associated with impedances (or electron cloud)
 - Computes the evolution of the bunch centroid as a function of time over an adjustable number of turns

- ImpedanceWake2D
 - Computes the longitudinal and transverse wake functions of multilayer structures, cylindrical or flat

- CST Microwave Studio
Resistive Wall Vertical Impedance: Various options for the wigglers pipe

⇒ a-C necessary for e⁻ cloud mitigation
⇒ NEG for good vacuum
⇒ Coating is “transparent” up to ~10 GHz
⇒ But at higher frequencies some narrow peaks appear
⇒ Important to define the contribution of the resistive wall
Single bunch simulations to define the instability thresholds

Mode spectrum of the horizontal and vertical coherent motion as a function of impedance

For zero chromaticity, the impedance budget is estimated at 7 MΩ/m
Estimating the machine impedance budget with a 4-kick approximation

- A uniform coating of NEG, 2μm thickness, ($\sigma=10^6$ S/m) was assumed around the ring made from stainless steel
- The contributions from the resistive wall of the beam chamber were singled out for both the arc dipoles and the wigglers

1 kick \rightarrow broadband resonator ($S_{\text{kick}}=1$ m)

2 kick \rightarrow arc (L=270.2 m, 9 mm, round, $<bx>=2.976$ m, $<by>=8.829$ m, $S_{\text{kick}}=150$ m)

9 mm round

FODO

6 mm flat

Wiggler

Wiggler

QF

QD

3 kick \rightarrow wigglers (L=104 m, 6 mm, flat, $<bx>=4.200$ m, $<by>=9.839$ m, $S_{\text{kick}}=41.3$ m)

4 kick \rightarrow rest of the FODO (L=53.3 m, 9 mm, round, $<bx>=5.665$ m, $<by>=8.582$ m, $S_{\text{kick}}=39.2$ m)
Estimating the machine impedance budget with a 4-kick approximation

- A uniform coating of NEG, 2μm thickness, ($\sigma=10^6$ S/m) was assumed around the ring made from stainless steel.

Straight section:
- 13 FODO cells
- ARC (9mm round): DS1-14 TME cells-DS2
- 3 kick \rightarrow wigglers (L=104m, 6mm, flat, $<bx>=4.200m, <by>=9.839m, Skick=41.3m)
- 4 kick \rightarrow rest of the FODO (L=53.3m, 9mm, round, $<bx>=5.665m, <by>=8.582m, Skick=39.2m)

For zero chromaticity, the impedance budget is estimated at 4 MΩ/m (7 MΩ/m for the BB only).

Need to characterize the properties of NEG.
Motivation

- Need to characterize the properties of the coating materials at high frequencies (CLIC), i.e. 500 GHz
- Characterize the electrical conductivity of NEG
- Combination of experimental method and EM simulations

EM properties of NEG and aC → **Code calculating wake fields/impedances** → **Instabilities studies for the CLIC DR**

TiZrV coating
Experimental Method (I)

- Waveguide Method
 - First tested at low frequencies, from 9-12 GHz
 - Use of a standard X-band waveguide, 50 cm length
 - Network analyzer
 - Measurement of the transmission coefficient S_{21}

![Experimental setup](image1)

X band Cu waveguide of 50 cm length
Copper waveguide

- First test: a pure copper (Cu) X band waveguide
- Measure the S_{21} from 9-12 GHz

Signals traveling in the waveguide experience loss due to the conductor resistance.

S_{21} is related to the loss suffered in the transmission from one port to the other.

Cu is a very good conductor and the losses are small.

S_{21} is related to the material conductivity.
3D EM Simulations (I)
CST Microwave Studio

- Software package for electromagnetic field simulations
- The tool Transient Solver also delivers as results the S-parameters
- CST is used to simulate the Cu waveguide (same dimensions as the ones used in the experiment → simulating the experimental setup)
3D EM Simulations and measurements (I)

- X band Cu waveguide, $\varepsilon_r=\mu_r=1$, σ is the (unknown) scanned parameter
- For each frequency from 9-12 GHz, the output result is the S_{21} coefficient as a function of conductivity
- Combine with the measurement results $\rightarrow \sigma$ as a function of frequency

Example at 10 GHz
Intersection of the simulation results with the measurement \rightarrow point of intersection defines the conductivity

Value of conductivity
3D EM Simulations and measurements (II) Conductivity of Cu

- Result from the intersection of measurements with CST MWS simulations

![Graph showing conductivity of Cu](image)

- Cu conductivity was estimated within the same order of magnitude with the known value
- Average is 5.91×10^7 S/m
- Good agreement with the known value of 5.8×10^7 S/m
- The attenuation is very sensitive to the errors because of the small losses (high conductivity of Cu)
- Despite this, the results were encouraging to continue with a coated waveguide
Experimental Method (III)

- **NEG coated Cu waveguide**
 - Same Cu waveguide used before is now coated with NEG

- **Coating procedure**
 - Elemental wires intertwined together produce a thin Ti-Zr-V film by magnetron sputtering
 - Coating was targeted to be as thick as possible (9 µm from first x-rays results)
Experimental Method (IV)

- **NEG coated Cu waveguide**
 - Measure the S_{21} from 9-12 GHz

![Graph showing S_{21} vs Frequency]

- S_{21} results indicate that the skin depth is small enough compared to the coating thickness
- Allows the EM interaction with the NEG
3D EM Simulations and measurements (III)
Conductivity of NEG

- Real thickness profile \rightarrow unknown
- First indication from x-rays
- 2 scenarios
 - skin depth $<<$ thickness \rightarrow losses only from NEG \rightarrow σ_{NEG}
 - simulation: infinite thickness of NEG \rightarrow upper limit
 - skin depth \sim thickness \rightarrow losses from NEG and Cu \rightarrow σ_{NEG}
 - simulation: NEG-coated (9µm) Cu waveguide
3D EM Simulations and measurements (IV)
Conductivity of NEG

- Upper limit for the conductivity of NEG in this frequency range
- Preliminary results

- Errors
 - Experimental method (stainless steel waveguide)
 - Benchmark CST MWS coating simulations
First tests of the CST MWS simulations (I)

- Check the results reliability of coating simulations
- First tests

Compare simulations
1. A Cu waveguide NEG coated of 100 µm (2 materials)
 - Assuming $\sigma_{NEG} = 2 \times 10^6$ S/m, the skin depth is varying from 3.9-3.2 µm for 8-12 GHz
 - $\delta = \sqrt{\frac{2}{\mu \omega \sigma}} \approx 503 \sqrt{\frac{1}{\mu_r f \sigma}}$
 - skin depth $<< 100$ µm thickness \rightarrow EM interaction only with NEG
2. A waveguide from NEG (1 material)
First tests of the CST MWS simulations (II)

- Compare the results from simulations for the 2 cases

The results are in a very good agreement, 1% error
First tests of the CST MWS simulations (III)

• Simulate different values of NEG thickness and check the output of simulations
 - From 8-12 GHz, skin depth varies from 3.9-3.2 µm ($\sigma_{\text{NEG}} = 2 \times 10^6$ S/m)
 - Simulate thickness from 1-20 µm
First tests of the CST MWS simulations (IV)

- Compare results for different NEG thickness from 1-20 µm

- For small values, 1-4 µm, the skin depth is larger or comparable to the thickness → small losses due to Cu
- For 10-20 µm, the skin depth << thickness → higher losses due to NEG

The results are in agreement with the expected ones
Summary

⇒ NEG (Non Evaporable Getter)/ aC (amorphous Carbon) coating is necessary for good vacuum and to fight e⁻ cloud in the EDR and PDR of CLIC

⇒ Unknown material properties at high frequencies

⇒ Combine experimental results with CST simulations

⇒ Powerful tool for this kind of measurements

50 cm Cu wg
9-12 GHz

Material properties
σ, ε, μ

Calculation of the wake fields

Study of instabilities with HEADTAIL

S21(σ)

Intersection

(f, S21)
Conclusions- Future work

- The waveguide method combined with CST EM simulations was tested at frequencies from 9-12 GHz for a Cu NEG coated waveguide
- The results were encouraging
- Upper limit for the NEG conductivity at this frequency range
- Measurements for a stainless steel waveguide will take place (error of the method)
- CST MWS simulations will be benchmarked (error of simulations)
- Measurements on a different coating? aC?
Challenges…

- Measure properties at high frequencies…
 - Up to 500 GHz/ 500 GHz Network analyzer (EPFL)
 - Very short waveguides, Y-band (0.5 x 0.25 mm)

Challenges
- Manufacture of the small waveguide
- Coating technique
- Profile measurements

Simulation
- Non-uniform coating
Acknowledgements

- A.T. Perez Fontenla
- G. Arnau Izquierdo
- S. Lebet
- M. Malabaila
- P. Costa Pinto
- M. Taborelli

Thank you for your attention!