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y Secondary electron emission

1.2

=

Secondary Electron Yield [SEY]
o
o)

o
o

I~
~

0 200 400 600 800 1000
Primary e energy [eV]
The Secondary Electron Yield of the chamber’s surface is basically the ratio between

emitted and impacting electrons and is function of the energy of the primary

electron.
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* During the bunch passage the electrons are accelerated by the beam “pinched”

at the center of the beam pipe
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* After the bunch passage the electrons hit the chamber’s wall (with E~100eV)

* If the Secondary Electron Yield (SEY) of the surface is large enough, secondary
electrons can be generated and growth of the total number of electrons is

observed
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 Secondary electrons are emitted with smaller energies (E~1eV) and, if they hit
the wall before the following bunch passage, they are absorbed without

generation of further secondaries

e Decay of the total number of electrons can be observed in this stage
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* Another bunch passage can interrupt the decay before reaching the initial value

* Inthese cases avalanche multiplication is observed between bunch passages
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e Strong impact on beam quality (EC induced instabilities, particle losses,

emittance growth)
* Dynamic pressure rise

 Heatload (on cryogenic sections)
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* Pioneering work which defined a

physical model for the EC build-up

* FORTRAN 77 code

e Scarcely modular
(difficult to maintain, develop and
debug)
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ECLOUD PyECLOUD

* Developed at CERN since 1997
(mainly by F.Zimmermann, G. Bellodi, O. Bruning, ° Development started in 2011

G. Rumolo, D. Schulte)

* Pioneering work which defined a

Sirveetesl) Treca) e i 8 [ G e * Inherits the physical model of ECLOUD

* FORTRAN 77 code * Python code

e Scarcely modular
(difficult to maintain, develop and
debug)

* Strongly modular (much easier to
develop and maintain)

e Several improvements introduced with
better performances in terms of
reliability, accuracy, efficiency, and
flexibility
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PYyECLOUD is a 2D macroparticle (MP) code for
the simulation of the electron cloud build-up

with:
e Arbitrary shaped chamber
e Ultra-relativistic beam

* Externally applied (uniform) magnetic field
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Evaluate the number of seed e” generated
during the current time step and generate

the corresponding MP:

* Residual gas ionization and

photoemission are implemented
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* The field map for the relevant chamber
geometry and beam shape is pre-computed
on a suitable rectangular grid and loaded

from file in the initialization stage

* When the field at a certain location is
needed a linear (4 points) interpolation

algorithm is employed
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Classical Particle In Cell (PIC) algorithm:

* Electron charge density distribution p(x,y)
computed on a rectangular grid

* Poisson equation solved using finite
difference method

e Field at MP location evaluated through

linear (4 points) interpolation
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The dynamics equation is integrated in order

to update MP position and momentum:

—L[v(t) x B(x().1) + B (x(t),1)]
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When a MP hits the wall
theoretical/empirical models are
employed to generate charge, energy

and angle of the emitted charge

According to the number of emitted
electrons, MPs can be simply rescaled or

new MP can be generated
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In an electron-cloud buildup, due to the multipacting process, the electron

number extends over several orders of magnitude

It is practically impossible to choose a MP size that is suitable for the entire
simulation (allowing a satisfactory description of the phenomenon and a

computationally affordable number of MPs)
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A reference MP size N__; is used to “take decisions”:

ref

1) Seed MP generation: the generated MPs have size N

2) Secondary MP emission: additional true secondary MPs

are emitted if the total emitted charge is >1.5N

3) MP cleaning: at each bunch passage a clean function is

called to eliminate all the MPs with charge <10“N,
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Macroparticle size management
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MP set regeneration

Each macroparticle is assigned to a cell of a
uniform grid in the 5-D space (x,y,v,,v,,v,) obtaining

an approximation of the phase space distribution

The new target MP size is chosen such that:

\rew Total number of electrons
ref Target number of MPs

A new MPs set, having the new reference size, is

generated according to the computed distribution

The error on total charge and total energy does not

go beyond 1-2%
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Macroparticle size management

The reference MP size N, is adaptively changed during the simulation:
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)/ Convergence and performances

7/ The newly introduced features had a significant impact on convergence
and speed performances.
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PYECLOUD at work

~7_ Several studies at CERN are/have been employing the new code:

Proton Synchrotron (PS):

* Study on EC dependence on the Bunch Profile (C. Bhat)

*  Benchmarking of shielded pickup measurements (S. Gilardoni, G. ladarola, M Pivi, G. Rumolo, C. Y. Vallgren)
Super Proton Synchrotron (SPS):

* Scrubbing optimization studies (G.ladarola, G. Rumolo)
* Intensity upgrade studied (G.ladarola, G. Rumolo)

* Benchmarking of Strip Detector measurements (H. Bartosik, G.ladarola, H. Neupert, M. Driss Mensi, G. Rumolo, M.
Taborelli)

Large Hadron Collider (LHC):

* Benchmarking of bunch-by-bunch energy loss data from stable-phase shift (J. F. Esteban Muller, G.ladarola, G.
Rumolo, E. Shaposhnikova)

* Map formalism study for scrubbing optimization (O. Dominguez, F. Zimmermann)

* Pressure observations vs. simulations benchmarking (O. Dominguez, F. Zimmermann)

* Background study for 800mm chamber close to ALICE (V. Baglin, O. Dominguez, G. ladarola, G. Rumolo)
* Heat load benchmarking for the cryogenic arcs (G. ladarola, H. Maury Cuna, G. Rumolo. F. Zimmermann)

* Benchmarking of Instability Simulations at LHC (H. Bartosik, G. ladarola, G. Rumolo)
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)/ Bunch by bunch energy loss

>~ PYECLOUD estimates the bunch by bunch energy loss, with a simple energy balance:
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y Bunch by bunch energy loss
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Simulation results could be benchmarked with measured bunch by bunch energy loss

(stable phase shift measurements).
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Simulation results could be benchmarked with measured bunch by bunch energy loss
(stable phase shift measurements).
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~7_~"

Simulation results could be benchmarked with measured bunch by bunch energy loss

(stable phase shift measurements).

c 25 ‘ L L L L —
E Simulated s 8 ¢
S 21 ¢ Med % .
e ) -3
1) | T T T .. B
4 1.5 —— Simulated °
- —*— Measured
> 1 ; -
% 15 J

0.5 ] —
e
I3) i
g 0 U U [
o 25 3000 3500

0.5

7

Bunch energy loss [mJ/Turn]
[

O J r r r
2420 2440 2460 2480 2500

Thanks to J. Esteban-Miiller and Elena Shaposhnikova



Bunch by bunch energy loss
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Simulation results could be benchmarked with measured bunch by bunch energy loss

(stable phase shift measurements).
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Bunch by bunch energy loss
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Bunch by bunch energy loss

PYECLOUD
10" . .
= [ s hd QII‘\MMR bhunches

Measurement Simulation

~ bunch 25 is the first unstable bunch 26 is the flrst unstable

Vertical position (mm)

- — - o
Turn Bunch

Simulation of 500 turns




(&)

SZ-\  Summary

e A new Python code for the simulation of the e-cloud build-up has been

developed

*  The structure of PyECLOUD has been presented (with a closer look to MP

size management)

. PYECLOUD has been used to reconstruct the SEY evolution of the LHC

beam screen, and benchmarked with stable phase shift maeasurements

Future plans

e  Arbitrary shaped chamber with non-uniform SEY (already implemented,

test ongoing)

. Non uniform magnetic field map (e. g. quadrupoles, combined function

magnets)

. Integration with HEADTAIL for self-consistent simulations



Thanks for your attention!



