

Electron cloud simulation with PyECLOUD

G. ladarola, G. Rumolo

Thanks to:

F. Zimmermann, G. Arduini, H. Bartosik, C. Bhat, R. De Maria, O. Dominguez, M. Driss Mensi, J. Esteban-Muller, W. Hofle, K. Li, H. Maury Cuna, E. Metral, G. Miano, H. Neupert, G. Papotti, T. Rijoff, E. Shaposhnikova, L. Tavian, M. Taborelli, C. Y. Vallgren

ICAP2012 – Warnemunde, Germany

- Introduction on Electron Cloud Effect
- PyECLOUD:
 - o Overview
 - MP size management
 - Convergence and performances
- **PyECLOUD** at work for LHC studies:
 - SEY reconstruction from heat-load measurements
 - Benchmarking with stable phase shift measurements
 - PyECLOUD HEADTDAIL simulation of EC induced instabilities

- Introduction on Electron Cloud Effect
- PyECLOUD:
 - o **Overview**
 - o MP size management
 - Convergence and performances
- **PyECLOUD** at work for LHC studies:
 - SEY reconstruction from heat-load measurements
 - Benchmarking with stable phase shift measurements
 - PyECLOUD HEADTDAIL simulation of EC induced instabilities

The **Secondary Electron Yield** of the chamber's surface is basically the ratio between emitted and impacting electrons and is function of the energy of the primary electron.

Beam pipe transverse cut

- After the bunch passage the electrons hit the chamber's wall (with E~100eV)
- If the Secondary Electron Yield (SEY) of the surface is large enough, secondary electrons can be generated and growth of the total number of electrons is observed

- After the bunch passage the electrons hit the chamber's wall (with E~100eV)
- If the Secondary Electron Yield (SEY) of the surface is large enough, secondary electrons can be generated and growth of the total number of electrons is observed

- After the bunch passage the electrons hit the chamber's wall (with E~100eV)
- If the Secondary Electron Yield (SEY) of the surface is large enough, secondary electrons can be generated and growth of the total number of electrons is observed

- After the bunch passage the electrons hit the chamber's wall (with E~100eV)
- If the Secondary Electron Yield (SEY) of the surface is large enough, secondary electrons can be generated and growth of the total number of electrons is observed

- After the bunch passage the electrons hit the chamber's wall (with E~100eV)
- If the Secondary Electron Yield (SEY) of the surface is large enough, secondary electrons can be generated and growth of the total number of electrons is observed

- After the bunch passage the electrons hit the chamber's wall (with E~100eV)
- If the Secondary Electron Yield (SEY) of the surface is large enough, secondary electrons can be generated and growth of the total number of electrons is observed

- After the bunch passage the electrons hit the chamber's wall (with E~100eV)
- If the Secondary Electron Yield (SEY) of the surface is large enough, secondary electrons can be generated and growth of the total number of electrons is observed

- After the bunch passage the electrons hit the chamber's wall (with E~100eV)
- If the Secondary Electron Yield (SEY) of the surface is large enough, secondary electrons can be generated and growth of the total number of electrons is observed

- After the bunch passage the electrons hit the chamber's wall (with E~100eV)
- If the Secondary Electron Yield (SEY) of the surface is large enough, secondary electrons can be generated and growth of the total number of electrons is observed

- After the bunch passage the electrons hit the chamber's wall (with E~100eV)
- If the Secondary Electron Yield (SEY) of the surface is large enough, secondary electrons can be generated and growth of the total number of electrons is observed

- After the bunch passage the electrons hit the chamber's wall (with E~100eV)
- If the Secondary Electron Yield (SEY) of the surface is large enough, secondary electrons can be generated and growth of the total number of electrons is observed

- Secondary electrons are emitted with smaller energies (E~1eV) and, if they hit the wall before the following bunch passage, they are absorbed without generation of further secondaries
- **Decay of the total number of electrons** can be observed in this stage

- Secondary electrons are emitted with smaller energies (E~1eV) and, if they hit the wall before the following bunch passage, they are absorbed without generation of further secondaries
- **Decay of the total number of electrons** can be observed in this stage

- Secondary electrons are emitted with smaller energies (E~1eV) and, if they hit the wall before the following bunch passage, they are absorbed without generation of further secondaries
- **Decay of the total number of electrons** can be observed in this stage

- Secondary electrons are emitted with smaller energies (E~1eV) and, if they hit the wall before the following bunch passage, they are absorbed without generation of further secondaries
- **Decay of the total number of electrons** can be observed in this stage

- Secondary electrons are emitted with smaller energies (E~1eV) and, if they hit the wall before the following bunch passage, they are absorbed without generation of further secondaries
- **Decay of the total number of electrons** can be observed in this stage

- Secondary electrons are emitted with smaller energies (E~1eV) and, if they hit the wall before the following bunch passage, they are absorbed without generation of further secondaries
- **Decay of the total number of electrons** can be observed in this stage

- Secondary electrons are emitted with smaller energies (E~1eV) and, if they hit the wall before the following bunch passage, they are absorbed without generation of further secondaries
- **Decay of the total number of electrons** can be observed in this stage

- Another bunch passage can interrupt the decay before reaching the initial value
- In these cases **avalanche multiplication** is observed between bunch passages

- Another bunch passage can interrupt the decay before reaching the initial value
- In these cases **avalanche multiplication** is observed between bunch passages

Electron cloud build-up

- Strong impact on beam quality (EC induced instabilities, particle losses, emittance growth)
- Dynamic pressure rise
- Heat load (on cryogenic sections)

- Introduction on Electron Cloud Effect
- **PyECLOUD**:
 - o Overview
 - o MP size management
 - Convergence and performances
- **PyECLOUD** at work for LHC studies:
 - SEY reconstruction from heat-load measurements
 - Benchmarking with stable phase shift measurements
 - PyECLOUD HEADTDAIL simulation of EC induced instabilities

ECLOUD

• Developed at CERN since **1997**

(mainly by F. Zimmermann, G. Bellodi, O. Bruning,

G. Rumolo, D. Schulte)

- Pioneering work which defined a physical model for the EC build-up
- FORTRAN 77 code
- Scarcely modular (difficult to maintain, develop and debug)

	ECLOUD	PyECLOUD
•	Developed at CERN since 1997 (mainly by F. Zimmermann, G. Bellodi, O. Bruning, G. Rumolo, D. Schulte)	• Development started in 2011
•	Pioneering work which defined a physical model for the EC build-up	Inherits the physical model of ECLOUD
•	FORTRAN 77 code	• Python code
•	Scarcely modular (difficult to maintain, develop and debug)	 Strongly modular (much easier to develop and maintain)

	ECLOUD	PyECLOUD
•	Developed at CERN since 1997 (mainly by F. Zimmermann, G. Bellodi, O. Bruning, G. Rumolo, D. Schulte)	 Development started in 2011
•	Pioneering work which defined a physical model for the EC build-up	• Inherits the physical model of ECLOUD
•	FORTRAN 77 code	• Python code
•	Scarcely modular (difficult to maintain, develop and debug)	 Strongly modular (much easier to develop and maintain)
		 Several improvements introduced with better performances in terms of reliability, accuracy, efficiency, and flexibility

- Introduction on Electron Cloud Effect
- PyECLOUD:

o Overview

- MP size management
- Convergence and performances
- **PyECLOUD** at work for LHC studies:
 - SEY reconstruction from heat-load measurements
 - Benchmarking with stable phase shift measurements
 - PyECLOUD HEADTDAIL simulation of EC induced instabilities

PyECLOUD is a **2D macroparticle (MP) code** for the simulation of the **electron cloud build-up** with:

- Arbitrary shaped chamber
- Ultra-relativistic beam
- Externally applied (uniform) magnetic field

- The field map for the relevant chamber geometry and beam shape is pre-computed on a suitable rectangular grid and loaded from file in the initialization stage
- When the field at a certain location is needed a linear (4 points) interpolation algorithm is employed

Classical Particle In Cell (PIC) algorithm:

- Electron charge density distribution ρ(x,y)
 computed on a rectangular grid
- Poisson equation solved using finite

difference method

• Field at MP location evaluated through

linear (4 points) interpolation

- Introduction on Electron Cloud Effect
- PyECLOUD:
 - o Overview
 - MP size management
 - Convergence and performances
- **PyECLOUD** at work for LHC studies:
 - SEY reconstruction from heat-load measurements
 - Benchmarking with stable phase shift measurements
 - PyECLOUD HEADTDAIL simulation of EC induced instabilities

- In an electron-cloud buildup, due to the multipacting process, the electron number extends over several orders of magnitude
- It is practically impossible to choose a MP size that is suitable for the entire simulation (allowing a satisfactory description of the phenomenon and a computationally affordable number of MPs)

A reference MP size N_{ref} is used to "take decisions":

- 1) Seed MP generation: the generated MPs have size N_{ref}
- Secondary MP emission: additional true secondary MPs are emitted if the total emitted charge is >1.5N_{ref}
- 3) MP cleaning: at each bunch passage a clean function is called to eliminate all the MPs with charge <10⁻⁴N_{ref}

MP set regeneration

- **a.** Each macroparticle is assigned to a cell of a uniform grid in the 5-D space (x,y,v_x,v_y,v_z) obtaining an approximation of the phase space distribution
- **b.** The new target MP size is chosen such that:

 $N_{ref}^{new} = \frac{Total \ number \ of \ electrons}{Target \ number \ of \ MPs}$

c. A new MPs set, having the new reference size, is generated according to the computed distribution

The error on total charge and total energy does not

go beyond 1-2%

- Introduction on Electron Cloud Effect
- PyECLOUD:
 - o Overview
 - MP size management
 - Convergence and performances
- **PyECLOUD** at work for LHC studies:
 - SEY reconstruction from heat-load measurements
 - Benchmarking with stable phase shift measurements
 - PyECLOUD HEADTDAIL simulation of EC induced instabilities

Convergence and performances

The **newly introduced features had a significant impact** on convergence and speed performances.

Timestep	ECLOUD	PYECLOUD
0.2 ns	29 min	12 min
0.1 ns	1h 27 min	13 min
0.05 ns	1h 45 min	24 min
0.025ns	3h 7 min	40 min
0.012ns	4h 15 min	1h 6 min

ECLOUD

PYECLOUD

SPS MBB bending magnet, SEY_{max} = 1.5, nominal 25ns beam, E=26GeV

Several studies at CERN are/have been employing the new code:

Proton Synchrotron (PS):

CÉRN

- Study on EC dependence on the Bunch Profile (C. Bhat)
- Benchmarking of shielded pickup measurements (S. Gilardoni, G. Iadarola, M Pivi, G. Rumolo, C. Y. Vallgren)

Super Proton Synchrotron (SPS):

- Scrubbing optimization studies (G.Iadarola, G. Rumolo)
- Intensity upgrade studied (G.Iadarola, G. Rumolo)
- Benchmarking of Strip Detector measurements (H. Bartosik, G.Iadarola, H. Neupert, M. Driss Mensi, G. Rumolo, M. Taborelli)

Large Hadron Collider (LHC):

- Benchmarking of bunch-by-bunch energy loss data from stable-phase shift (J. F. Esteban Muller, G.Iadarola, G. Rumolo, E. Shaposhnikova)
- Map formalism study for scrubbing optimization (O. Dominguez, F. Zimmermann)
- **Pressure observations vs. simulations benchmarking** (O. Dominguez, F. Zimmermann)
- Background study for 800mm chamber close to ALICE (V. Baglin, O. Dominguez, G. Iadarola, G. Rumolo)
- Heat load benchmarking for the cryogenic arcs (G. Iadarola, H. Maury Cuna, G. Rumolo. F. Zimmermann)
- Benchmarking of Instability Simulations at LHC (H. Bartosik, G. ladarola, G. Rumolo)

Several studies at CERN are/have been employing the new code:

Proton Synchrotron (PS):

CÉRN

- Study on EC dependence on the Bunch Profile (C. Bhat)
- Benchmarking of shielded pickup measurements (S. Gilardoni, G. Iadarola, M Pivi, G. Rumolo, C. Y. Vallgren)

Super Proton Synchrotron (SPS):

- Scrubbing optimization studies (G.Iadarola, G. Rumolo)
- Intensity upgrade studied (G.Iadarola, G. Rumolo)
- Benchmarking of Strip I Taborelli)

>10⁴ simulations run so far

Driss Mensi, G. Rumolo, M.

Large Hadron Collider (LHC):

- Benchmarking of bunch-by-bunch energy loss data from stable-phase shift (J. F. Esteban Muller, G.Iadarola, G. Rumolo, E. Shaposhnikova)
- Map formalism study for scrubbing optimization (O. Dominguez, F. Zimmermann)
- Pressure observations vs. simulations benchmarking (O. Dominguez, F. Zimmermann)
- Background study for 800mm chamber close to ALICE (V. Baglin, O. Dominguez, G. Iadarola, G. Rumolo)
- Heat load benchmarking for the cryogenic arcs (G. Iadarola, H. Maury Cuna, G. Rumolo. F. Zimmermann)
- Benchmarking of Instability Simulations at LHC (H. Bartosik, G. ladarola, G. Rumolo)

- Introduction on Electron Cloud Effect
- PyECLOUD:
 - o Overview
 - o MP size management
 - Convergence and performances

• **PyECLOUD** at work for LHC studies:

- SEY reconstruction from heat-load measurements
- Benchmarking with stable phase shift measurements
- PyECLOUD HEADTDAIL simulation of EC induced instabilities

EC observations in the LHC

- Introduction on Electron Cloud Effect
- PyECLOUD:
 - Overview
 - o MP size management
 - Convergence and performances
- **PyECLOUD** at work for LHC studies:

• SEY reconstruction from heat-load measurements

- Benchmarking with stable phase shift measurements
- PyECLOUD HEADTDAIL simulation of EC induced instabilities

Estimation of the SEY in the LHC arcs

shut-down + 3m operation (50ns) 2012

- Introduction on Electron Cloud Effect
- PyECLOUD:
 - o Overview
 - o MP size management
 - Convergence and performances
- **PyECLOUD** at work for LHC studies:
 - SEY reconstruction from heat-load measurements
 - Benchmarking with stable phase shift measurements
 - PyECLOUD HEADTDAIL simulation of EC induced instabilities

Bunch en. loss e⁻ en. gain En. transferred to walls (electrostatic + kinetic)

(stable phase shift measurements).

(stable phase shift measurements).

Thanks to J. Esteban-Müller and Elena Shaposhnikova

(stable phase shift measurements).

Thanks to J. Esteban-Müller and Elena Shaposhnikova

(stable phase shift measurements).

Thanks to J. Esteban-Müller and Elena Shaposhnikova

- Introduction on Electron Cloud Effect
- PyECLOUD:
 - o Overview
 - o MP size management
 - Convergence and performances
- **PyECLOUD** at work for LHC studies:
 - SEY reconstruction from heat-load measurements
 - Benchmarking with stable phase shift measurements
 - PyECLOUD HEADTDAIL simulation of EC induced instabilities

Bunch by bunch energy loss

1x

CERN

• Single passage of 48 bunches

PyECLOUD

- Equal bunch intensities (1.0e11p/b)
- Transverse emittance of $\varepsilon_x = \varepsilon_y = 3.5 \mu m$
- Electrons move in dipole field
- Beam screen approximated as ellipse

Summary

ERN

- A new Python code for the simulation of the e-cloud build-up has been developed
- The structure of PyECLOUD has been presented (with a closer look to MP size management)
- PyECLOUD has been used to reconstruct the SEY evolution of the LHC beam screen, and benchmarked with stable phase shift maeasurements

Future plans

- Arbitrary shaped chamber with non-uniform SEY (already implemented, test ongoing)
- Non uniform magnetic field map (e. g. quadrupoles, combined function magnets)
- Integration with HEADTAIL for self-consistent simulations

Thanks for your attention!