Rapid Integration Over History in Self-consistent 2D CSR Modeling

<u>Klaus Heinemann</u>, David Bizzozero, James A. Ellison, Stephen Lau

Dept. Mathematics & Statistics, University of New Mexico

Gabriele Bassi

Brookhaven National Laboratory, Upton, Long Island, New York

August 21, 2012 11th International Computational Accelerator Physics Conference (ICAP) Rostock-Warnemünde

Klaus Heinemann, David Bizzozero, James A. Ellison, Stephen L: Rapid Integration Over History in Self-consistent 2D CSR Modeli

伺い イラト イラト

Main points of this talk

- (1) Vlasov-Maxwell approach to bunch compressor
- (2) Current paradigm:
 - Sheet bunch moving in the midplane between the two shielding plates
 - Monte Carlo Particle (MCP) algorithm with MPI-FORTRAN code VM3@A (Vlasov-Maxwell Monte-Carlo Method at Albuquerque)
- (3) Modification of current paradigm: Get rid of integration over history by doing Fourier transform of field + approximation of Bessel function J_0
- (4) Future paradigm: Direct time integration of the VM system of PDEs, e.g., Discontinuous Galerkin method

Proposed layout of FERMI@Elettra first bunch compressor system. The four dipoles are in green.

Klaus Heinemann, David Bizzozero, James A. Ellison, Stephen L: Rapid Integration Over History in Self-consistent 2D CSR Modeli

Vlasov-Maxwell approach to bunch compressor - Part I

- Setup: 4-dipole bunch compressor with two perfectly conducting shielding plates parallel to Y = 0 plane
- Vlasov-Maxwell approach: 6D phase space density $f(\mathbf{R}, Y, \mathbf{P}, P_Y, u)$ satisfying Vlasov equation for self field $\mathbf{E}(\mathbf{R}, Y, u), \mathbf{B}(\mathbf{R}, Y, u)$ with $\mathbf{R} = (Z, X), \mathbf{P} = (P_Z, P_X), u = ct$
- Self field E, B satisfies Maxwell's equations for charge/current densities ρ_f, j_f of f ("mean field" approach to E, B)

Vlasov-Maxwell approach to bunch compressor - Part II

• Self field solves initial-boundary problem for wave equation:

- Wave Equation: $\Box \mathbf{E} = \mathbf{S}_{E}(\mathbf{R}, Y, u)$, $\Box \mathbf{B} = \mathbf{S}_{B}(\mathbf{R}, Y, u)$ where $\Box = \frac{\partial^{2}}{\partial X^{2}} + \frac{\partial^{2}}{\partial Y^{2}} + \frac{\partial^{2}}{\partial Z^{2}} - \frac{\partial^{2}}{\partial u^{2}}$ and $\mathbf{S}_{E}, \mathbf{S}_{B}$ determined by ρ_{f}, \mathbf{j}_{f}
- Dirichlet condition on shielding plates for E_Z, E_X, B_Y
- Neumann condition on shielding plates for E_Y, B_X, B_Z
- Neglect initial self field $\Longrightarrow \mathbf{E}, \mathbf{B}, \frac{\partial \mathbf{E}}{\partial u}, \frac{\partial \mathbf{B}}{\partial u}$ vanish at u = 0
- Brute force method: Compute *f* in whole phase space and compute E, B in whole configuration space
- More efficient method than brute force method needed: See below!

Current paradigm of our collaboration - Part I

Sheet bunch inside midplane between two shielding plates

 $f(\mathbf{R}, Y, \mathbf{P}, P_Y, u) = \delta(Y)\delta(P_Y)f_{sheet}(\mathbf{R}, \mathbf{P}, u)$ $\rho(\mathbf{R}, Y, u) = \delta(Y)\rho_{sheet}(\mathbf{R}, u)$ $\mathbf{j}(\mathbf{R}, Y, u) = \delta(Y)\mathbf{j}_{sheet}(\mathbf{R}, u)$

- *f_{sheet}* simulated by particles (not computed!) → Monte Carlo Particle (MCP) algorithm with MPI-FORTRAN code VM3@A
- ρ_{sheet} , \mathbf{j}_{sheet} computed by density estimation

Current paradigm of our collaboration - Part II

Sheet bunch \Longrightarrow

- **E**, **B** only needed in Y = 0 plane
- E_Y, B_X, B_Z vanish in Y = 0 plane
- E_Z, E_X, B_Y vanish on shielding plates (Dirichlet condition)
- Abbreviate $F(\mathbf{R}, u) := (E_Z(\mathbf{R}, 0, u), E_X(\mathbf{R}, 0, u), B_Y(\mathbf{R}, 0, u))$

Current paradigm of our collaboration - Part III

Initial boundary problem of wave equation gives

 $\textbf{F}=\textbf{F}_0+\textbf{F}_1\;,$

where \mathbf{F}_0 is the nonshielding contribution:

$$\mathbf{F}_0(\mathbf{R}, u) = \frac{-1}{4\pi} \int_0^u \int_{-\pi}^{\pi} dv d\theta \mathbf{S}(\mathbf{R} + \mathbf{e}(\theta)(u - v), v)$$

with $\mathbf{e}(\theta) = (\cos \theta, \sin \theta)$ and source **S** is determined by $\rho_{sheet}, \mathbf{j}_{sheet}$ and \mathbf{F}_1 is the nonshielding term

Remarks:

• v-integral in self field involves history of S

Current paradigm of our collaboration - Part IV

- Remarks (continued):
 - $\bullet\,$ Nonshielding term F_0 often sufficient for applications
 - For *v*-integration we use adaptive integrator (Gauss-Kronrod)
 - θ integration is done with trapezoidal rule
 - Evolution of source governed by Vlasov equation =>> use Monte Carlo particle method in accelerator coordinates using a density estimation procedure (e.g. kernel density estimation with a product of Epanechnikov kernels)
 - Self field computation is most time consuming part because of *v*-integral over bunch history flop count per time step is $O(N_X N_Z N_v N_{\theta})$ where $N_X N_Z$ is number of field grid points, $N_v N_{\theta}$ is number of integration grid points

向下 イヨト イヨト ニヨ

• To improve efficiency, see below

Modification of current paradigm - Part I

• In the absence of shielding

$$\mathsf{F}_0(\mathsf{R},u) = \frac{-1}{4\pi} \int_0^u \int_{-\pi}^{\pi} dv d\theta \mathsf{S}(\mathsf{R} + \mathbf{e}(\theta)(u - v), v)$$

• Fourier transform in **R** of $S(\mathbf{R}, u)$ and $F(\mathbf{R}, u)$:

$$\tilde{\mathbf{S}}(\mathbf{k}, u) = \frac{1}{2\pi} \int_{\mathbb{R}^2} d\mathbf{R} \exp(-i\mathbf{k} \cdot \mathbf{R}) \mathbf{S}(\mathbf{R}, u)$$
$$\tilde{\mathbf{F}}_0(\mathbf{k}, u) = \frac{1}{2\pi} \int_{\mathbb{R}^2} d\mathbf{R} \exp(-i\mathbf{k} \cdot \mathbf{R}) \mathbf{F}_0(\mathbf{R}, u)$$

• $\Longrightarrow \widetilde{\mathbf{F}}_{0}(\mathbf{k}, u) = -\frac{1}{2} \int_{0}^{u} dv \widetilde{\mathbf{S}}(\mathbf{k}, v) J_{0}((u - v)|\mathbf{k}|)$ where J_{0} is zeroth order Bessel function of first kind and $|\mathbf{k}| = \sqrt{k_{X}^{2} + k_{Z}^{2}}$

Klaus Heinemann, David Bizzozero, James A. Ellison, Stephen Le Rapid Integration Over History in Self-consistent 2D CSR Modeli

Modification of current paradigm - Part II

- Get rid of integral over history of bunch by approximating J_0 : $J_0(v) \approx \sum_{n=1}^{N_E} \alpha_n \exp(\beta_n v)$
- $\Longrightarrow \widetilde{\mathbf{F}}_{0}(\mathbf{k}, u) \approx \sum_{n=1}^{N_{E}} \alpha_{n} \widetilde{\mathbf{F}}_{n}(\mathbf{k}, u)$ where $\widetilde{\mathbf{F}}_{n}(\mathbf{k}, u) = -\frac{1}{2} \int_{0}^{u} dv \widetilde{\mathbf{S}}(\mathbf{k}, v) \exp(\beta_{n}(u-v)|\mathbf{k}|)$ • $\Longrightarrow \frac{\partial \widetilde{\mathbf{F}}_{n}}{\partial u} = \beta_{n} |\mathbf{k}| \widetilde{\mathbf{F}}_{n} - \frac{1}{2} \widetilde{\mathbf{S}}(\mathbf{k}, u)$

Klaus Heinemann, David Bizzozero, James A. Ellison, Stephen La Rapid Integration Over History in Self-consistent 2D CSR Model

白 マ イ ヨ マ イ ヨ マ く ゆ

Modification of current paradigm - Part III

- Thus we get rid of history of bunch ($\Delta > 0$ is time step): $\widetilde{\mathbf{F}}_{n}(\mathbf{k}, u) = \exp(\beta_{n}\Delta|\mathbf{k}|)\widetilde{\mathbf{F}}_{n}(\mathbf{k}, u - \Delta)$ $-\frac{1}{2}\int_{u-\Delta}^{u} dv\widetilde{\mathbf{S}}(\mathbf{k}, v)\exp(\beta_{n}(u-v)|\mathbf{k}|)$
- Remarks:
 - Above formula is the center piece of modified paradigm it effectively removes the *v*-integration over bunch history
 - At a point in code where we compute F(R, u), we know the particle phase space positions. In addition in the modified paradigm we will also know the F̃_n(k, u - Δ) and S̃(k, u - Δ)
 - We first compute $S(\mathbf{R}, u)$ from the particle positions, $\widetilde{S}(\mathbf{k}, u)$ by FFT and then $\widetilde{F}_n(\mathbf{k}, u)$ from above formula
 - S̃(k, v) slowly varying ⇒ above integral can be done after linear interpolation of S̃(k, v) using S̃(k, ·) at u − ∆ and u
 - From F_n(k, u) we find F(R, u) by an inverse FFT and then evolve particles to u + Δ.
 - For nonuniform grid, NFFT will be used instead of FFT.

Modification of current paradigm - Part IV

- Remarks (continued):
 - The coefficients α_n and β_n in our approximation:

$$J_0(v) \approx A(v) \equiv \sum_{n=1}^{N_E} \alpha_n \exp(\beta_n v)$$

are obtained from an optimization problem.

• In fact taking Laplace transform one obtains:

$$\widehat{J}_0(s) = rac{1}{\sqrt{s^2+1}} pprox \sum_{n=1}^{N_E} rac{lpha_n}{s-eta_n} = \widehat{A}(s)$$

whence, for given N_E one is interested in α_n, β_n which satisfy

$$\sup_{s\in\eta+\mathrm{i}\mathbb{R}}\left|\frac{\widehat{A}(s)-\widehat{J}_0(s)}{\widehat{J}_0(s)}\right|<\varepsilon$$

where ε is a prescribed tolerance and $\eta>0$ is a shift to avoid poles

 This method of approximating J₀ is also used for radiation boundary conditions

Klaus Heinemann, David Bizzozero, James A. Ellison, Stephen Le Rapid Integration Over History in Self-consistent 2D CSR Modeli

Modification of current paradigm - Part V

Toy model to compare current and modified paradigms:
"Field":

$$F(\mathbf{R}, u) = \int_0^u dv \int_{-\pi}^{\pi} d\theta G(\mathbf{R} + (u - v)\mathbf{e}(\theta), v) ,$$

with "source" given by

$$G(\mathbf{R}, u) = \exp\left(-\nu |\mathbf{R} - \mathbf{R}_c(u)|^2\right),$$

$$\mathbf{R}_c(u) = (a\cos(\omega u), b\sin(\omega u)).$$

Source G is essentially a Gaussian moving on an ellipse.

Modification of current paradigm - Part VI

- Toy model (continued)
 - We take $\nu = 5, \omega = 2\pi, a = 1.2, b = 0.8$
 - We calculate $F(\mathbf{R}, n\Delta)$ on $Z \times X$ grid with $64 \cdot 48$ grid points
 - Left figure displays the expected quadratic growth in CPU time for current paradigm using quad2D integrator from Matlab.
 - In modified paradigm the CPU time grows linearly
 - $\bullet~$ CPU times consistent with flop # and function evaluation #
 - We used $64 \cdot 48$ grid points in $k_Z \cdot k_X$ with maximal $|\mathbf{k}|$ -value around 26 so that needed domain of J_0 is [0, 260]. We used $N_E = 56$ where relative error (with respect to the envelope) of J_0 on interval $[0, 10^6]$ is ≤ 0.01 . Relative error only blows up beyond interval $[0, 10^7]$.

Future paradigm

- Consider sheet bunch or more general bunch
- Do direct time integration of VM system of PDEs
- This eliminates integral over history but requires fields outside bunch
- Thus use radiation boundary conditions to restrict field domain to subset of space between the shielding plates
- For spatial discretization we will begin by investigating Discontinuous Galerkin methods and their implementation in the code HEDGE (Hybrid Easy Discontinuous Galerkin Environment).
- This work will be part of a Ph.D. dissertation project by one of us (D.B.).
- Discontinuous Galerkin method is closely related to Finite Element method

• • = • • = •