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Motivation \’orpql

TECH-X

Laser-plasma acceleration (LPA): Short, intense laser pulse
drives, plasma wave, achieves orders of magnitude higher
gradient than conventional accelerators

LPA experiments have been producing quasi-
monoenergetic beams for many years

Beam energy and quality steadily improving

New capabilities bring interest in a wide range of
applications

— Compact x-ray sources, coherent light sources, phase contrast
imaging, NMD detection, colliders

— Some of these have tight beam quality requirements

Bubble regime injection remains attractive due to simplicity
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e Need simulations with high quantitative accuracy
— Understanding the physics
— Designing LPA systems

e LPA injection is highly sensitive to parameters
— What are physical vs. numerical effects?
— Numerical artifacts can expand the phase space of the injected beam

e Particle statistics play a key role in accuracy

e Want to see convergence in key beam parameters (charge,
energy, energy spread emittance) showing adequate
statistics

¢ Qutline
— Enhanced loading
— Blob particles
— Controlled dispersion



x NebraleCgla
Collection volumes '/
TECH-X Vorpal

e We can enhance particle statistics with a priori knowledge
from an initial simulation

e We use the collection volume — the range of initial positions
of injected electrons
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Collection volume of injected electrons in an LPA injection simulation. Here the
plasma has a uniform density of 6.5 x 102 m=3, and the laser has peak intensity
given by a, = 3.27, duration 30 fs, and spot size 13.6 ym. Good agreement is seen
between Calder-Circ (black) and Vorpal (red). From B. Cowan et al.,
“Computationally efficient methods for modelling laser wakefield acceleration in the
blowout regime,” J. Plasma Phys. (published online 6/13/12)
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e The collection volume forms an annular region around the
axis
e We load a larger number of particles per cell in that region

e With grid loading, we enhance on a cell-by-cell basis
— Preserves quiet start
— Loading is enhanced if the cell center is in the collection volume

— Load on a uniform grid within each cell

Transition between
unenhanced and enhanced
regions
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Tests in 2D Vorpal

e We use 2D (slab) simulations to test effects of enhanced
loading, perform convergence studies

e 2D simulation parameters: Plasma has 800 um upramp,
400 wm uniform region at 8 x 10 m= density, and 800 um
downramp; laser has 2, = 3.2 and a 13.6 um spot size

* Injection observed in second bucket
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Collection volume for 2D run

« Annular region not as narrow
as 3D case

» Consider it to be 2—8 um



x-f‘” Nebra&lcg%
2D results: Longitudinal phase space '/
TECH-). " sttudinalp P Vorpa

e Ran tests with 1, 2, 4, 8, and 16 PPC in collection volume
and 1 PPC outside, as well as benchmark with 3 PPC
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e Computed bunch charge, mean longitudinal momentum,
longitudinal momentum spread, and transverse emittance
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e Excellent agreement
— Charge and mean p, for 8 and 16 PPC within 0.4%
— For p, spread and emittance within 3%

— Benchmark values not within difference = enhanced loading in
collection volume helps; outside not so much

10!

=
S
[=)



xé"' Nebra&lcg%
2D results: Transverse phase space '/
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e Enhanced loading reveals, clarifies features

Benchmark: 3 PPC 1 PPC in collection volume 2 PPC in collection volume
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e For uniform loading, used 4 PPC everywhere

e For enhanced loading, used 16 PPC (1 x 4 x 4) inside
collection volume (radius 7-10 um), 1 PPC outside

e Compared transverse phase space
— Better definition of halo for enhanced loading
— (leaner resolution of Gaussian core
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TECH-! Blob particles \’orpql

e Idea: Let particles choose their own statistics
e Particles deform according to tidal forces on them

e When they expand by a given amount in any direction, they
split

Deformed particles
around bubble sheath
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e Quantitative results don’t match enhanced loading values,
but phase space shows interesting aspects
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e Quantitative mismatch: 6x less charge, ~30% higher mean

p., ~50% lower p, spread, ~25% higher emittance

* Noise issues due to splitting; first bucket not suppressed
e But occupied transverse phase space volume much lower
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e Enhanced loading can actually be faster

— For 3D test, enhanced loading used 68% fewer particles than uniform
loading

— Simulation ran faster without any optimization effort

e Blob particles slow
— Lots of linear algebra
— But optimization could improve performance significantly
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e Accuracy in LPA simulations requires correct group
velocity of laser pulse

e Standard FDTD update known to exhibit numerical
dispersion for waves propagating along an axis

e Use generalized method to achieve much more accurate
dispersion for on-axis waves

— Following [1] and [2]; generalized to arbitrary aspect ratios and
benchmarked [3]

— Fields are smoothed for computation of curl, in directions transverse
to the derivative

[1] A. J. Pukhov, J. Plasma Phys. 61, 425-433 (1999)
[2] M. Karkkainen et al., Proc. ICAP 2006, 35—40 (2006)
[3] B. Cowan et al., submitted to PRST-AB (2012)
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e Shown to nearly eliminate dispersion error in linear channel
propagation tests

e Shown to produce more physical, better converged results
in quasilinear stage tests
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e Algorithm development, benchmarking done in
collaboration with C. G. R. Geddes et al., LBNL
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e With controlled dispersion, injected beam dephases more
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e Enhanced loading provides access to details unavailable
from conventional technique

— Enables particle statistics needed for adequate resolution of particle
beam; demonstrated convergence

— Allows high statistics in collection volume that would be intractable
if used uniformly (i.e. 16 PPC)

e Blob particle benefits uncertain, but interesting questions
remain

— How is it that it results in lower occupied phase space volume, even
with noise issues?

e Controlled dispersion improves accuracy
* Next steps

— Improve performance via load balancing, cell ordering
— Convergence w/ statistics demonstrated; what about resolution?
— Continue investigation of blob particles



