

Improved particle statistics for laserplasma self-injection simulations

B. M. Cowan¹, S. Y. Kalmykov², B. A. Shadwick², K. Bunkers², D. L. Bruhwiler¹, and D. P. Umstadter²

> ¹Tech-X Corporation ²University of Nebraska, Lincoln

Acknowledgments

- D. N. Smithe for helpful advice
- The Vorpal development team
- Work supported by:
 - U.S. DOE Contracts DE-SC0006245 (SBIR), DE-SC0000845 (SBIR), DE-FC02-07ER41499 (SciDAC), DE-FG02-08ER55000, and DE-FG02-05ER15663
 - DTRA Contract HDTRA1-11-C-0001
 - AFOSR Grants FA9550-11- 1-0157 and 9550-08-1-0232
- Vorpal simulations used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. DOE under Contract DE-AC02-05CH11231.

Motivation

- Laser-plasma acceleration (LPA): Short, intense laser pulse drives, plasma wave, achieves orders of magnitude higher gradient than conventional accelerators
- LPA experiments have been producing quasimonoenergetic beams for many years
- Beam energy and quality steadily improving
- New capabilities bring interest in a wide range of applications
 - Compact x-ray sources, coherent light sources, phase contrast imaging, NMD detection, colliders
 - Some of these have tight beam quality requirements
- Bubble regime injection remains attractive due to simplicity

Simulation challenges

- Need simulations with high quantitative accuracy
 - Understanding the physics
 - Designing LPA systems
- LPA injection is highly sensitive to parameters
 - What are physical vs. numerical effects?
 - Numerical artifacts can expand the phase space of the injected beam
- Particle statistics play a key role in accuracy
- Want to see convergence in key beam parameters (charge, energy, energy spread emittance) showing adequate statistics
- Outline
 - Enhanced loading
 - Blob particles
 - Controlled dispersion

Collection volumes

- We can enhance particle statistics with *a priori* knowledge from an initial simulation
- We use the *collection volume* the range of initial positions of injected electrons

Collection volume of injected electrons in an LPA injection simulation. Here the plasma has a uniform density of $6.5 \times 10^{24} \text{ m}^{-3}$, and the laser has peak intensity given by $a_0 = 3.27$, duration 30 fs, and spot size 13.6 µm. Good agreement is seen between Calder-Circ (black) and Vorpal (red). From B. Cowan *et al.*, "Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime," J. Plasma Phys. (published online 6/13/12)

Enhanced statistics in the collection volume

- The collection volume forms an annular region around the axis
- We load a larger number of particles per cell in that region
- With grid loading, we enhance on a cell-by-cell basis
 - Preserves quiet start
 - Loading is enhanced if the cell center is in the collection volume
 - Load on a uniform grid within each cell

Transition between unenhanced and enhanced regions

Tests in 2D

- We use 2D (slab) simulations to test effects of enhanced loading, perform convergence studies
- 2D simulation parameters: Plasma has 800 μ m upramp, 400 μ m uniform region at 8 × 10²⁴ m⁻³ density, and 800 μ m downramp; laser has $a_0 = 3.2$ and a 13.6 μ m spot size
- Injection observed in second bucket

Collection volume for 2D run

- Annular region not as narrow as 3D case
- Consider it to be 2–8 µm

2D results: Longitudinal phase space

• Ran tests with 1, 2, 4, 8, and 16 PPC in collection volume and 1 PPC outside, as well as benchmark with 3 PPC everywhere

- Observed at point of minimal energy spread
- Up to 4 PPC (including benchmark) shows small injection in first bucket
- Conclusion: Injection in first bucket due to statistical noise, and more than 4 PPC required to eliminate it

2D results: Figures of merit

• Computed bunch charge, mean longitudinal momentum, longitudinal momentum spread, and transverse emittance

- Excellent agreement
 - Charge and mean p_x for 8 and 16 PPC within 0.4%
 - For p_x spread and emittance within 3%
 - Benchmark values not within difference ⇒ enhanced loading in collection volume helps; outside not so much

2D results: Transverse phase space

• Enhanced loading reveals, clarifies features

- Halo around core of beam phase space more clearly defined with enhanced loading
- Spiral pattern reveals nonlinear effects
- At 16 PPC, additional spiral pattern visible even within core

3D comparison

- For uniform loading, used 4 PPC everywhere
- For enhanced loading, used 16 PPC ($1 \times 4 \times 4$) inside collection volume (radius 7–10 µm), 1 PPC outside
- Compared transverse phase space
 - Better definition of halo for enhanced loading
 - Cleaner resolution of Gaussian core

Blob particles

- Idea: Let particles choose their own statistics
- Particles deform according to tidal forces on them
- When they expand by a given amount in any direction, they split

Deformed particles around bubble sheath

Blob beam comparison

 Quantitative results don't match enhanced loading values, but phase space shows interesting aspects

- Quantitative mismatch: $6 \times less$ charge, ~30% higher mean p_x , ~50% lower p_x spread, ~25% higher emittance
- Noise issues due to splitting; first bucket not suppressed
- But *occupied* transverse phase space volume much lower

Performance issues

- Enhanced loading can actually be faster
 - For 3D test, enhanced loading used 68% fewer particles than uniform loading
 - Simulation ran faster without any optimization effort
- Blob particles slow
 - Lots of linear algebra
 - But optimization could improve performance significantly

Controlled dispersion

- Accuracy in LPA simulations requires correct group velocity of laser pulse
- Standard FDTD update known to exhibit numerical dispersion for waves propagating along an axis
- Use generalized method to achieve much more accurate dispersion for on-axis waves
 - Following [1] and [2]; generalized to arbitrary aspect ratios and benchmarked [3]
 - Fields are smoothed for computation of curl, in directions transverse to the derivative

- [1] A. J. Pukhov, J. Plasma Phys. **61**, 425–433 (1999)
- [2] M. Kärkkäinen et al., Proc. ICAP 2006, 35-40 (2006)
- [3] B. Cowan *et al.*, submitted to PRST-AB (2012)

Controlled dispersion benchmarking

- Shown to nearly eliminate dispersion error in linear channel propagation tests
- Shown to produce more physical, better converged results in quasilinear stage tests

• Algorithm development, benchmarking done in collaboration with C. G. R. Geddes *et al.*, LBNL

• With controlled dispersion, injected beam dephases more slowly, gains more energy

B. Cowan et al., J. Plasma Phys (2012)

Conclusions and outlook

- Enhanced loading provides access to details unavailable from conventional technique
 - Enables particle statistics needed for adequate resolution of particle beam; demonstrated convergence
 - Allows high statistics in collection volume that would be intractable if used uniformly (i.e. 16 PPC)
- Blob particle benefits uncertain, but interesting questions remain
 - How is it that it results in lower occupied phase space volume, even with noise issues?
- Controlled dispersion improves accuracy
- Next steps
 - Improve performance via load balancing, cell ordering
 - Convergence w/statistics demonstrated; what about resolution?
 - Continue investigation of blob particles