

WAVE A Computer Code for the Tracking of Electrons through Magnetic Fields and the Calculation of Spontaneous Synchrotron Radiation

Developed since 1990 for an expert's report about WLS for metrology in the x-ray regime requiring:

- High accuracy ($\Delta < 10^{-4}$) for the calculation of SR

Investigation of the impact of the WLS on the machine,

- with respect to beta-functions, emittance, beam polarization, and dynamic aperture

Since 1993 the emphasis is placed on undulators, both magnetic fields and SR spectra.

Since 2009: Coherent radiation (NOT FEL) of electrons in a phase-space, CPU cluster

Graphical User Interface

WAVE is controlled by input files, to be run in batch mode

GUI:

To handle files and visualize results

Based on Perl-Tk and PAW

\$Contrl

! The undulator and wiggler modes should work for standard
! insertion devices. Reasonable settings for some parameters
! are taken (mainly in namelist COLLIN).

! Experienced users might prefere there own settings.

IUNDULATOR=1

! UNDULATOR MODE: ! whole trajectory is taken as source of ! synchroton light (ignoring input of ! parameters WGWINFC, collimators ...) ! ISPECMODE = 1 ! IMAGSPLN = -9999 ! NLPOI = -9999 ! WGWINFC = 45. ! ISPECDIP = 0 ! IFOLD = 1, if IFOLD.NE.0 ! IEFOLD = 1, if IEFOLD.NE.0 ! IEFOLD = 1, if IEFOLD.NE.0 ! IF (IPIN.GT.0) IPIN = 1 ! BMOVECUT = 1.E-7

! Magnetic Fields	
KHALBA=0	 ! insertion device described by HALBACHs formulas ! parameter namelist HALBACH ! magnetic field routine BHALBA ! KHALBA.It.0 means zero field outside device
! Parameter Namelists	
\$HALBACH	 ! magnetic field defined by HALBACH formula ! coordinate system here different from the ! standard of WAVE, HALBACH's conventionused ! i.e. z is longitudinal device axis ! the system is internally converted to WAVE standard
B0HALBA=0.5	! peak field [T]
XLHALBA=0.0	! 2*pi/kx (horizontal gradient) [m] ! XLHALBA=0 means YLHALBA=ZLHALBA (no gradient)
ZLHALBA=0.04 PERHAL=50	! 2*pi/kz [m] ! number of periods

\$END

Numerical integration over the steps of the trajectory

$$\int_0^{\Delta T} rac{1}{R(t)} rac{ec{n}(t) imes [(ec{n}(t) - ec{eta}(t)) imes \dot{ec{eta}}(t)]}{(1 - ec{eta}(t)ec{n}(t))^2} \, e^{i\omega(t+R(t)/c)} \, dt$$

 $\Delta s = c \cdot \Delta T = 6 mm$

Evaluate integral numerically for steps of trajectory

Algorithms

$$\int_0^{\Delta T} \frac{1}{R(t)} \frac{\vec{n}(t) \times \left[\left(\vec{n}(t) - \vec{\beta}(t) \right) \times \dot{\vec{\beta}}(t) \right]}{(1 - \vec{\beta}(t)\vec{n}(t))^2} e^{i\omega(t + R(t)/c)} dt$$

Treat ω -independent part as constant for each integration step and expand phase to first order

$$\sum_{j=1}^{N} \frac{1}{R(t_j)} \frac{\vec{n}(t_j) \times \left[(\vec{n}(t_j) - \vec{\beta}(t_j)) \times \dot{\vec{\beta}}(t_j) \right]}{(1 - \vec{\beta}(t_j)\vec{n}(t_j))^2} e^{i\omega(t_j + R(t_j)/c)}$$
$$\times \frac{1 - e^{i\omega(1 - \vec{\beta}(t_j)\vec{n}(t_j))\Delta t_j}}{(1 - \vec{\beta}(t_j)\vec{n}(t_j))\omega}$$

 $e^{i\omega(t_{j+1}+R(t_{j+1})/c)} \approx e^{i\omega(t_j+R(t_j)/c)} \times e^{i\omega(1-\vec{\beta}(t_j)\vec{n}(t_j))\Delta t_j}$

- Planar and helical wigglers and undulators as analytical models of permanent magnet structures
- Tapers and field errors of insertion devices
- Dipoles, quadrupoles, sextupoles with fringe fields
- In- and output of magnetic fields maps or tables
- Maxwell-conform parametrization and interpolation of magnetic fields

REC model of UE112

Current sheet method

Endpole configuration

Maxwell-conform 2D fields as a superposition of functions

$$B_y(y,z) = B_0 \sum_{0 < m,n} C_{mn} \cosh(mk_y y) \cos(nk_z z)$$

$$B_z(y,z) = -B_0 \sum_{0 < m,n} rac{nk_z}{mk_y} C_{mn} \sinh(mk_y y) \sin(nk_z z)$$

$$nk_z = mk_y$$

3D expansion for undulators are given in, J. Bahrdt, G. Wüstefeld, Phys. Rev. ST Accel. Beams 14, 040703 (2011)

Horizontal distribution of synchrotron radiation of the UE56

Comparison of measurements and WAVE calculations

Marker: Measurement

Solid line: WAVE

Dashed line: Slicing signal

Undulators UE56 with Chicane

The radiation cones of

the two undulators are

separated by a 100µrad-

chicane

The figure shows the spatial

distribution of the circularly

polarized radiation

NIM A 467-468 (2001) 21-29

Interference of two coupled UE56

Solid line: Constructive interference

Solid line with markers: WAVE calculations Magnets are modeled by current sheets

Dashed and dotted line: Destructive interference, contribution of each UE56 and incoherent sum

NIM A 467-468 (2001) 21-29

Markers: Measurements Lines: WAVE calculations NIM A 467-468 (2001) 21-29

Calculation and Measurement of absolute photon flux of a 6T-WLS

Ratio of measurement and calculation

- Energy loss, continuous and with quantum fluctuations
- Concept of bunches:
 - Particles within a bunch are treated coherently
 - Bunches are treated incoherently
- Parallel runs of WAVE on a cluster: Results of radiation calculations of all runs are summed up

All these new features need intensive test and cross-checking

9th harmonic, on-axis, 35 sections

pencil beam, no enery loss

pencil beam, cont. ener. loss

pencil beam, cont. ener. loss, taper

"real" beam, taper

Cross-checks pending!