Numerical Modeling of RF Electron Sources for **FEL-Accelerators**

Technische Universität Darmstadt, Germany

Erion Gjonaj

Computational Electromagetics Laboratory (TEMF),

Contents

- Low emittance RF electron sources
 - The PITZ photoinjector at DESY
 - Numerical simulations
- Self-consistent simulations with PBCI
 - Beam scraping
 - CDS booster
 - Diagnosis cross
- Summary and conclusions

TECHNISCHE UNIVERSITÄT DARMSTADT

The European X-Ray Laser Project (XFEL)

- Electron beam specifications:
- Peak current (1-10 kA)
- Emittance (< 1 mm mrad)</p>
- Energy (10-20 GeV)
- Energy spread (~0.01 %)
- Bunch length (10 µm 1 mm)

Cannot control transverse beam emittance except for at injection time

Low emittance source necessary

European XFEL design layout

RF photoinjector

DESY PITZ-1.8 photoinjector setup

- 1999: project begin at PITZ facility in Zeuthen, Berlin
- 2003: first operating device 1.7 mm mrad for 1nC bunch
- 2010: PITZ-1.6 1.2 mm mrad
- 2011: PITZ-1.8 meets E-XFEL specification 0.9 mm mrad

(Some) particle tracking codes

- Rest frame space-charge field codes (Parmela, Astra, IMPACT-T, GPT, ...)
- Vlasov moment equation solvers (V-code, ...)
- Envelope equation solvers (Homdyn, …)

- Use of various physical approximations
- Space-charge fields do not "see" cavity geometry (except for cathode)
- o Wakefields only as fixed external maps or Green functions
- Numerically efficient (mostly axis-symmetric)

(Some) particle tracking codes

- Rest frame space-charge field codes (Parmela, Astra, IMPACT-T, GPT, ...)
- Vlasov moment equation solvers (V-code, ...)
- Envelope equation solvers (Homdyn, …)

Wakefield codes (Echo, Pbci, Gdfidl, CST PS, ...)

o Ultra-relativistic beams with fixed beam current only

○ No space-charge

Full-wave in 3D using moving window and dispersion free algorithms

(Some) particle tracking codes

- Rest frame space-charge field codes (Parmela, Astra, IMPACT-T, GPT, ...)
- Vlasov moment equation solvers (V-code, ...)
- First principle
- No geometry (except for cathode)
- o Computationally extremely inefficient
- Lienard-Wiechert solvers (Tredi, Quindi, ...)

(Some) particle tracking codes

- Rest frame space-charge field codes (Parmela, Astra, IMPACT-T, GPT, ...)
- Vlasov moment equation solvers (V-code, ...)
- Envelope equation solvers (Homdyn, …)
- First principle
- Full geometry and arbitrary transient beam distributions
- Computationally <u>less efficient</u> in 3D: not applicable for short bunches and long accelerator structures (> 1m)
- Full-wave PIC codes (Mafia, CST PS, Vorpal, ...)

TECHNISCHE UNIVERSITÄT DARMSTADT

Rest frame SC field codes

(charge) to average rest frame

(fields) back to lab frame

- Influence of rest frame approximation (neglect retardation and acceleration radiation) on simulation accuracy?
- Impact of geometrical wakefields on transverse emittance?

5.74 m 0.5 m 1 m 3.1 m Q = 1nC $\Delta X_{rms} = 0.4mm$ **Beam scraper for PITZ** 2,5 25 Slice emittance Slice energy spread 2 20 R s_x / mm mrad ke 1,5 15 √^{____} 70 ¶ 1 0,5 5 n ++ -5 -3 -2 2 3 -4 4 5 $\Delta z / mm$

Particle-In-Cell in the moving window

- Nearly ultra-relativistic but:
 - transverse dynamics over long distances not negligible
 - non-constant current due to scraping
- Combine moving frame wakefield simulation approach (PBCI) with PIC

Particle-In-Cell in the moving window

- Dispersion-free EM field solution:
 - Optimum stable time step
 - Computational window moving with c
 - Boundary conditions not needed
- Small discretization domain:
 - Necessary transverse resolution for bunch and geometry < 50 μ m
- Simple field initialization:
 - TEM field of ultra-relativistic bunch in pipe of arbitrary cross-section

Beam scraper results

Beam scraper results

Beam scraper results

Emittance per Q (1nC, 0.4mm, L = 0.1mm)

0,65 8 100pC / 0.4mm 1nC / 0.4mm Astra 2nC / 0.6mm R = 3mm6 R = 2.5mm 0,63 R = 2mmR = 1.5mm s_x / Q / (n mm mrad / nC) Δ R = 1mmR = 0.5mm A (ex / Q) / % 0,61 2 0 0,59 -2 0.57 -4 1,5 5,67 5,7 5,73 5,76 5,79 5,82 5,85 5,88 5,91 0,5 1 2 2,5 3 Iris radius / mm Position / m

Expected gain in FEL-brilliance

TECHNISCHE UNIVERSITÄT DARMSTADT

(Typical) data for CDS simulation	
Length	2.5 <i>m</i>
Grid	$\Delta x = \Delta z = 50 \ \mu m$
No. DoFs	300×10^{6}
No. particles	$0.5 \times 10^5 - 5 \times 10^5$
No. steps	~100,000
Simulation time	~12 – 36 hrs.

- Fast convergence (1-2 window lengths sufficient)
- Low cost compared to total simulation time

TECHNISCHE UNIVERSITÄT DARMSTADT

CDS results: emittance

Summary and conclusions

Summary

- Beam dynamics simulations for photoinjector including SC and wakefields
 - Impact of geometry on soft beams?
 - Validity of rest frame transformation based computations?
- Introducing SC in PBCI
 - Moving window approach: allows for necessary grid resolution in the simulation of long structures
 - Consistent field initialization at any position within the injector by rest frame transformation + additional iterative procedure

Summary and conclusions

Conclusions

- Long distance self-consistent simulations by combination of moving window / dispersions-free method and PIC
- Beam scraping at injector exit useful for (narrow range of) appropriate parameters
- Retardation field effects not important: gun and cathode region still need to be investigated
- Small impact of geometry on beam emittance: only beams on-axis considered
- Important deviations in energy spread due to wakefields (CDS) observed: should be taken into account by FEL designers
- Differences between measured and simulated emittances at PITZ most probably due to improper emission modeling

Thank You for your attention