Eigenmode Computation For Ferrite-Loaded Cavity Resonators Klaus Klopfer*, Wolfgang Ackermann, Thomas Weiland Institut für Theorie Elektromagnetischer Felder, TU Darmstadt

TECHNISCHE UNIVERSITÄT DARMSTADT

11th International Computational Accelerator Physics Conference (ICAP) 2012

THACC2

*Supported by GSI, Darmstadt

Contents

Motivation

Computational Model Fundamental Relations Implementation

Parallel Computing

Numerical Examples Biased Cylinder Resonator Biased Cavity With Ferrite Ring Cores

Summary

Motivation

GSI Helmholtzzentrum für Schwerionenforschung

Motivation

GSI SIS18 Ferrite Cavity

Main benefits of ferrite cavities:

- reduction of wavelength
 more compact cavity
- modification of resonance frequency in a wide range SIS 18 cavity:
 - $\sim 0.6\,\text{MHz}-5\,\text{MHz}$

Motivation

GSI SIS18 Ferrite Cavity: Main components

Assumptions: $|\vec{H}_d| \ll |\vec{H}_{\text{bias}}|$, effect of hysteresis negligible

$$\vec{B}(t) = \mu_0 \mu_{\text{bias}} \vec{H}_{\text{bias}} + \mu_0 \overleftrightarrow{\mu}_d \vec{H}_d(t) = \mu_0 \mu_{\text{bias}} \vec{H}_{\text{bias}} + \mu_0 \overleftrightarrow{\mu}_d \operatorname{Re}\left(\vec{H}_d \cdot e^{-i\omega t}\right)$$

Linearization at working point

Assumptions: $|\vec{H}_d| \ll |\vec{H}_{\text{bias}}|$, effect of hysteresis negligible

$$\vec{B}(t) = \mu_0 \mu_{\text{bias}} \vec{H}_{\text{bias}} + \mu_0 \overleftrightarrow{\mu_d} \vec{H}_d(t) = \mu_0 \mu_{\text{bias}} \vec{H}_{\text{bias}} + \mu_0 \overleftrightarrow{\mu_d} \operatorname{Re}\left(\vec{H}_d \cdot e^{-i\omega t}\right)$$

Linearization at working point

- Modification of bias current
 - ⇒ Modification of differential permeability
 - ⇒ Adjustment of eigenfrequency

Assumptions: $|\vec{H}_d| \ll |\vec{H}_{bias}|$, effect of hysteresis negligible

$$\vec{B}(t) = \mu_0 \mu_{\text{bias}} \vec{H}_{\text{bias}} + \mu_0 \overleftrightarrow{\mu_d} \vec{H}_d(t) = \mu_0 \mu_{\text{bias}} \vec{H}_{\text{bias}} + \mu_0 \overleftrightarrow{\mu_d} \operatorname{Re}\left(\vec{H}_d \cdot e^{-i\omega t}\right)$$

Linearization at working point

Eigensolutions determined by:

$$\epsilon^{-1} \nabla \times \left(\mu_0^{-1} \overset{\leftrightarrow}{\mu_d}{}^{-1}_d \nabla \times \vec{E} \right) = \omega^2 \vec{E}$$

Boundary condition: $\vec{n} \times \vec{E} = 0$ on cavity boundary

[D. Polder, Phil. Mag., 40 (1949)]

Properties of the differential permeability tensor $\overleftrightarrow{\mu}_{d}$:

Fully occupied (3×3)-tensor, for $\vec{H} = H_{\text{bias}} \cdot \vec{e}_z$ reduces to the Polder tensor

$$\stackrel{\leftrightarrow}{\mu}_{d} = \begin{pmatrix} \mu_{1} & i\mu_{2} & 0\\ -i\mu_{2} & \mu_{1} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

with
$$\mu_{1,2} = \mu_{1,2} \Big(\vec{H}_{\text{bias}}, \omega \Big)$$

If magnetic losses are included: Im(µ_{1,2}) ≠ 0 ⇒ Non-Hermitian

$$\epsilon^{-1} \nabla \times \left(\mu_0^{-1} \overset{\leftrightarrow}{\mu}_d^{-1} \nabla \times \vec{E} \right) = \omega^2 \vec{E}$$

$$\epsilon^{-1} \nabla \times \left(\mu_0^{-1} \overset{\leftrightarrow}{\mu_d} ^{-1} \nabla \times \vec{E} \right) = \omega^2 \vec{E} - -$$

Discretization by Finite Integration Technique (FIT):

$$M_{\epsilon}^{-1}\widetilde{\mathbf{C}}M_{d,\mu}^{-1}\mathbf{C}\widehat{\mathbf{e}} = \omega^{2}\widehat{\mathbf{e}}$$

$$\epsilon^{-1} \nabla \times \left(\mu_0^{-1} \overset{\leftrightarrow}{\mu_d} ^{-1} \nabla \times \vec{E} \right) = \omega^2 \vec{E} - -$$

Discretization by Finite Integration Technique (FIT):

$$M_{\epsilon}^{-1}\widetilde{\mathbf{C}}M_{d,\mu}^{-1}\mathbf{C}\widehat{\mathbf{e}} = \omega^{2}\widehat{\mathbf{e}} \qquad \checkmark$$

- permeability tensor M_{d,µ}:
 - non-diagonal
 - dependend on \vec{H}_{bias} and ω

$$\epsilon^{-1}\nabla\times\left(\mu_{0}^{-1}\overset{\leftrightarrow}{\mu_{d}}^{-1}\nabla\times\vec{E}\right)=\omega^{2}\vec{E}$$

Discretization by Finite Integration Technique (FIT):

$$M_{\epsilon}^{-1}\widetilde{\mathbf{C}}M_{d,\mu}^{-1}\mathbf{C}\widehat{\mathbf{e}} = \omega^{2}\widehat{\mathbf{e}} \qquad \longleftarrow$$

- permeability tensor M_{d,µ}:
 - non-diagonal
 - dependend on \vec{H}_{bias} and ω
 - if magnetic losses included:

- requirements on eigensolver:
 - \Rightarrow nonlinear
 - \Rightarrow non-Hermitian

Concept

- calculation of bias magnetic field
- determination of permeability matrix M⁻¹_{d,µ}

General requirements:

- support of nonlinear material
- support of lossy material
- parallel computation with distributed memory (scalability)

calculation of eigenmodes

(*) Portable, Extensible Toolkit for Scientific Computation

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Klaus Klopfer | 10 / 20

(*) Portable, Extensible Toolkit for Scientific Computation

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Klaus Klopfer | 10 / 20

- ► *H_i*-algorithm Helmholtz decomposition $\vec{H} = \vec{H}_i + \vec{H}_h$ with $\nabla \times \vec{H}_i = \vec{J}$ and $\vec{H}_h = -\nabla \varphi$
- Solution of nonlinear equation: successive substitution or Newton method

- ► *H_i*-algorithm Helmholtz decomposition $\vec{H} = \vec{H}_i + \vec{H}_h$ with $\nabla \times \vec{H}_i = \vec{J}$ and $\vec{H}_h = -\nabla \varphi$
- Solution of nonlinear equation: successive substitution or Newton method

- Jacobi-Davidson algorithm harmonic Ritz-values for computation of interior eigenvalues
- Solution of nonlinear problem: successive substitution

Contents

Motivation

Computational Model Fundamental Relations Implementation

Parallel Computing

Numerical Examples Biased Cylinder Resonator Biased Cavity With Ferrite Ring Cores

Summary

Aim: Efficient distributed computing

Aim: Efficient distributed computing

Aim: Efficient distributed computing

Aim: Efficient distributed computing

Aim: Efficient distributed computing

Contents

Motivation

Computational Model Fundamental Relations Implementation

Parallel Computing

Numerical Examples Biased Cylinder Resonator Biased Cavity With Ferrite Ring Cores

Summary

- ► test model: $(|\vec{H}_{ext}| = 2750 \frac{A}{m}; \mu_r = 7)$ lossless, ferrite-filled cylindrical cavity resonator longitudinally biased by homogeneous magnetic field \rightarrow
- semi-analytical solution available [Chinn, Epp and Wilkins]

 test model: lossless, ferrite-filled cylindrical cavity resonator

longitudinally biased by homogeneous magnetic field

 test model: lossless, ferrite-filled cylindrical cavity resonator longitudinally biased by homogeneous magnetic field

$$\vec{\mathcal{H}}_{ext} \notin \vec{e}_{z}:$$

$$\vec{\mu}_{d} = \begin{pmatrix} \mu_{x,x} & \mu_{x,y} & \mu_{x,z} \\ \mu_{y,x} & \mu_{y,y} & \mu_{y,z} \\ \mu_{z,x} & \mu_{z,y} & \mu_{z,z} \end{pmatrix}$$

TECHNISCHE UNIVERSITÄT DARMSTADT

Ferrite material is characterized by $B(H) = \mu_0 \ 2.5 \cdot 10^4 \tanh \left(H \cdot 10^{-2} \frac{\text{m}}{\text{A}}\right) \frac{\text{A}}{\text{m}} + \mu_0 H \text{ and } \epsilon_r = 1$

- Ferrite material is characterized by $B(H) = \mu_0 \ 2.5 \cdot 10^4 \tanh \left(H \cdot 10^{-2} \frac{\text{m}}{\text{A}}\right) \frac{\text{A}}{\text{m}} + \mu_0 H \text{ and } \epsilon_r = 1$
- bias magnetic field excited by current winding (2 kA)

Results of fully nonlinear computation

Spectrum of the lowest nine eigenmodes

Results of fully nonlinear computation

Spectrum of the lowest nine eigenmodes

Results of fully nonlinear computation

Comparison nonlinear — linear computation

Comparison nonlinear — linear computation

Contents

Motivation

Computational Model Fundamental Relations Implementation

Parallel Computing

Numerical Examples Biased Cylinder Resonator Biased Cavity With Ferrite Ring Cores

Summary

Summary

Goal:

calculation of eigenvectors for biased ferrite cavities

- 1. Magnetostatic solver (nonlinear material):
 - \Rightarrow permeability tensor $\overleftrightarrow{\mu}_{d}$
- 2. Eigensolver:
 - \Rightarrow nonlinear complex eigenvalue problem

Magnetostatic

Summary

Goal:

calculation of eigenvectors for biased ferrite cavities

1. Magnetostatic solver (nonlinear material):

 \Rightarrow permeability tensor $\stackrel{\leftrightarrow}{\mu}_{d}$

2. Eigensolver:

 \Rightarrow nonlinear complex eigenvalue problem

 Status: Functionality of fully nonlinear solver for Hermitian problems demonstrated

