Efficient Modeling of Laser-Plasma Accelerators Using the Ponderomotive-Based Code INF&RNO

ICAP2012, Warnemünde, August 19th - 24th, 2012

Work supported by Office of Science, US DOE, Contract No. DE-AC02-05CH11231

Many thanks to:

C.B. Schroeder, C.G.R. Geddes, J.-L. Vay, S. Bulanov, E. Esarey & W.P. Leemans

LOASIS program, LBNL, Berkeley, USA

F. Rossi, P. Londrillo, G. Servizi & G. Turchetti

Department of Physics, University of Bologna, Italy

Overview

• challenges in modeling laser-plasma accelerators (LPAs) over distances ranging from cm to m scales

- the code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde)
 - basic equations, numerics and features of the code
 - validation tests and performance
- applications
 - modeling of current LOASIS experiments (tunable LPA)
 - modeling of 10 GeV LPA stage for BELLA (<u>BE</u>rkeley <u>Lab</u> <u>Laser</u> <u>A</u>ccelerator)
- conclusions

• <u>Wakefields</u> (due to charge separation: ion at rest VS displaced electrons)

$$E_z \sim mcw_p/e \sim 100 [V/m] \times (n_0[cm^{-3}])^{1/2}$$

e.g.: for $n_0 \sim 10^{18} \text{ cm}^{-3}$, $I_0 \sim 10^{18} \text{ W/cm}^2 ===> E_z \sim 100 \text{ GV/m}$, ~ 10^3 larger than conventional RF accelerators

Energy gain in a (single stage) LPA

Limits to single stage energy gain:

- Iaser diffraction (~ Rayleigh range)
 - mitigated by transverse plasma density tailoring (plasma channel) and/or self-focusing
- beam-wave dephasing

 $\beta_{\text{bunch}} \sim 1, \beta_{\text{wave}} \sim 1 - \lambda_0^2 / (2\lambda_p^2) \rightarrow \text{slippage } L_d \propto \lambda_p / (\beta_{\text{bunch}} - \beta_{\text{wave}}) \sim n_0^{-3/2}$ $\rightarrow \text{mitigated by longitudinal density tailoring}$

' laser energy depletion \rightarrow energy loss into plasma wave excitation

Energy gain (single stage) ~ n_0^{-1}

Experimental demonstration: 1 GeV high-quality beam from LPA

*Leemans et al., Nature Phys. (2006); Nakamura et al., Phys. Plasmas (2007)

3D full-scale modeling of an LPA over cm to m scales is a challenging task

lason		Simulation complexity:
wavelength ()	, hui	\propto (D/ λ_0) X (λ_p/λ_0)
wavelength (^A ₀)		\propto (D/ λ_0) ^{4/3} [if D is deph. length]
laser length (L)	~ few tens of µm	3D explicit PIC simulation:
	~10 µm @ 10¹9 cm⁻³	10 ⁴ -10 ⁵ CPUh for 100 MeV stage
plasma wavelength (λ_p)	~30 µm @ 10¹8 cm⁻³	~10 ⁶ CPUh for 1 GeV stage
	~100 µm @ 1017 cm ⁻³	10 -10 CI ON JUI 10 DEV Slage
interaction length	~ mm @ 10 ¹⁹ cm ⁻³ → 100 MeV	- -
(D)	~ cm @ 10¹8 cm⁻³ → 1 GeV	plasma
	~ m @ 10¹7 cm⁻³ → 10 GeV	λ_{p} waves
	laser ₂₀	
	pulse H	
		bunch

The INF&RNO framework: motivations

drawbacks/issues: control of

physics (e.g. RBS)]

* Vay, PRL (2007)

What we need (from the computational point of view):

- run 3D simulations (dimensionality matters!) of cm/m-scale laser-plasma ٠ interaction in a reasonable time (a few hours/days)
- perform, for a given problem, different simulations (exploration of the parameter space, optimization, convergence check, etc..)

INF&RNO* is orders of magnitude faster than full PIC codes still retaining physical fidelity

INF&RNO ingredients:

- envelope model for the laser
 - \sim no λ_{laser}
 - axisymmetric

- 2D cylindrical (r-z)
 - self-focusing & diffraction for the laser as in 3D
 - significant reduction of the computational complexity
 - ... but only axisymmetric physics
- ponderomotive approximation to describe laser \rightarrow plasma interaction
 - (analytical) averaging over fast oscillations in the laser field
 - => scales $(\hat{\Theta} \lambda_{laser})$ are removed from the plasma model
- PIC & (cold) fluid
 - ✓ fluid → noiseless and accurate for linear/mildly nonlinear regimes
 - integrated modalities (e.g., PIC for injection, fluid acceleration)
 - hybrid simulations (e.g., fluid background + externally injected bunch)

* Benedetti et al., Proc. of AAC10 (2010); Benedetti et al., Proc. of PAC11 (2011); Benedetti et al., JCP, submitted

The INF&RNO framework: physical model

* deep into depletion

rel. invariance

The code adopts the "comoving" normalized variables $\xi = k_{\mu}(z - ct), \tau = \omega_{\mu}t$

laser pulse (envelope)

$$a_{\perp} = \frac{\hat{a}(\xi, r)}{2} e^{i(k_0/k_p)\xi} + c.c. \rightarrow \left(\nabla_{\perp}^2 + 2i\frac{k_0}{k_p}\frac{\partial}{\partial\tau} + 2\frac{\partial^2}{\partial\xi\partial\tau} - \frac{\partial^2}{\partial\tau^2} \right) \hat{a} = \frac{\delta}{\gamma_{\text{fluid}}} \hat{a}$$

wakefield (fully electromagnetic)

$$\frac{\partial E_r}{\partial \tau} = \frac{\partial (E_r - B_{\phi})}{\partial \xi} - J_r \qquad \qquad \frac{\partial E_z}{\partial \tau} = \frac{\partial E_z}{\partial \xi} + \frac{1}{r} \frac{\partial (rB_{\phi})}{\partial r} - J_z \qquad \qquad \frac{\partial B_{\phi}}{\partial \tau} = -\frac{\partial (E_r - B_{\phi})}{\partial \xi} + \frac{\partial E_z}{\partial r}$$

• plasma

$$\mathsf{PIC} \to \begin{cases} \forall j=1,\dots,N_{\rho} \\ \frac{d\xi_{j}}{d\tau} = \beta_{z,j} - 1 & \frac{du_{z,j}}{d\tau} = -\frac{\partial\gamma_{j}}{\partial\xi} - E_{z} - \beta_{r}B_{\phi} \\ \frac{dr_{j}}{d\tau} = \beta_{r,j} & \frac{du_{r,j}}{d\tau} = -\frac{\partial\gamma_{j}}{\partial\tau} - E_{r} + \beta_{z}B_{\phi} \\ \gamma_{j} = \sqrt{1 + |\hat{\mathfrak{d}}|^{2}/2 + u_{z,j}^{2} + u_{r,j}^{2}} \end{cases} \quad \mathsf{fluid} \to \begin{cases} \frac{\partial\delta}{\partial\tau} = \frac{\partial\delta}{\partial\xi} - \nabla \cdot \left(\vec{\beta}\delta\right) \\ \frac{\partial(\delta u_{j})}{\partial\tau} = \frac{\partial(\delta u_{j})}{\partial\xi} - \nabla \cdot \left(\vec{\beta}\delta u_{j}\right) + \\ +\delta \left(-(\mathsf{E} + \vec{\beta} \times \mathsf{B}) - \frac{1}{2\gamma_{\mathsf{fluid}}} \nabla \frac{|\hat{\mathfrak{d}}|^{2}}{2}\right)_{j} \\ \gamma_{\mathsf{fluid}} = \sqrt{1 + |\hat{\mathfrak{d}}|^{2}/2 + u_{z}^{2} + u_{r}^{2}} \end{cases}$$

where δ is the density and **J** the current density

The INF&RNO framework: numerical aspects

- longitudinal derivatives:
 - 2nd order **upwind** FD scheme $\rightarrow (\partial_{\xi}f)_{i,i} = (-3f_{i,i} + 4f_{i+1,i} f_{i+2,i}) / 2\Delta_{\xi}$
 - BC easy to implement (unidirection "information" flux using ξ)
- transverse (radial) derivatives:
 - 2nd order centered FD scheme $\rightarrow (\partial_r f)_{i,i} = (f_{i,i+1} f_{i,i-1})/2\Delta_r$
 - fields are not singular in r=0, from symmetry we have

 $\partial_r E_z = 0, \quad E_r = B_\phi = 0, \quad \lim_{r \to 0} E_r/r = \partial E_r/\partial r|_0, \quad \lim_{r \to 0} B_\phi/r = \partial B_\phi/\partial r|_0$

- time integration for plasma / EM wakefield: RK2 [fluid] / RK4 [PIC]
- quadratic shape function for force interpolation/current deposition [PIC]
- digital filtering for current and/or fields smoothing [PIC]
 - N*binomial filter (1, 2, 1) + compensator

- compact low-pass filter*: $\beta F_{i-1} + F_i + \beta F_{i+1} = \sum_{k=0,2} a_k(\beta) (f_{i+k} + f_{i-k})/2$

* Shang, JCP (1999)

The INF&RNO framework: improved laser envelope solver/1

- envelope description: a_{laser} = â exp[ik_o(z-ct)]/2 + c.c.
 *slow" "fast"
 - early times: NO need to resolve λ_0 (~ 1 µm), only $L_{env} \sim \lambda_p$ (~ 10-100 µm)
 - later times: laser-pulse redshifting \rightarrow structures smaller than L_{env} arise in \hat{a} (mainly in Re[\hat{a}] and Im[\hat{a}]) and need to be captured*

Is it possible to have a good description of a depleted laser at a reasonably low resolution?

* Benedetti *at al.*, AAC2010 Cowan *et al.*, JCP (2011) W. Zhu *et al.*, POP (2012)

The INF&RNO framework: improved laser envelope solver/2

 ${}^{\bullet}$ envelope evolution equation is discretized in time using using a 2^{nd} order Crank-Nicholson scheme

$$-\frac{\hat{\mathfrak{s}}^{n+1}-2\hat{\mathfrak{s}}^n+\hat{\mathfrak{s}}^{n-1}}{\Delta_{\tau}^2}+2\left(i\frac{k_0}{k_p}+\frac{\partial}{\partial\xi}\right)\frac{\hat{\mathfrak{s}}^{n+1}-\hat{\mathfrak{s}}^{n-1}}{2\Delta_{\tau}}=-\nabla_{\perp}^2\frac{\hat{\mathfrak{s}}^{n+1}+\hat{\mathfrak{s}}^{n-1}}{2}+\frac{\delta^n}{\gamma_{\mathsf{fluid}}^n(\hat{\mathfrak{s}}^n)}\frac{\hat{\mathfrak{s}}^{n+1}+\hat{\mathfrak{s}}^{n-1}}{2}$$

- FD form for $\partial/\partial\xi \rightarrow$ unable to deal with unresolved structures in â
- INF&RNO uses a polar representation for \hat{a} when computing $\partial/\partial\xi$

The INF&RNO framework: improved laser envelope solver/3

1D sim.: $a_0=1$, $k_0/k_p=100$, $L_{rms}=1$ (parameters of interest for a 10 GeV LPA stage)

pump depletion length (resonant pulse): $L_{pd} \approx \lambda_p^3 / \lambda_0^2 \approx 80$ cm

The INF&RNO framework: Lorentz Boosted Frame* (LBF) modeling/1

• The spatial/temporal scales involved in a LPA simulation DO NOT scale in the same way changing the reference frame

Laboratory Frame	Boosted Lorentz Frame (β_*)
$ \begin{array}{l} \lambda_0 \rightarrow \text{laser wavelength} \\ \ell \rightarrow \text{laser length} \\ L_p \rightarrow \text{plasma length} \\ c\Delta t < \Delta z \ll \lambda_0, \ \lambda_0 < \ell \ll L_p \end{array} $	$\lambda_0' = \gamma_* (1 + \beta_*) \lambda_0 > \lambda_0$ $\ell' = \gamma_* (1 + \beta_*) \ell > \ell$ $L_p' = L_p / \gamma_* < L_p$
$\begin{array}{l} \Rightarrow t_{simul} \sim (L_p + \ell)/c \\ \# \text{steps} \ = \ \frac{t_{simul}}{\Delta t} \ \propto \ \frac{L_p}{\lambda_0} \ \gg \ 1 \\ \text{large} \ \# \text{of steps} \end{array}$	$\Rightarrow t'_{simul} \sim (L'_p + \ell') / (c(1 + \beta_*))$ #steps' = $\frac{t'_{simul}}{\Delta t'} \propto \frac{L_p}{\lambda_0 \gamma_*^2 (1 + \beta_*)^2}$ # of steps reduced $(1/\gamma_*^2)$

==> the LF is not the optimal frame to run a LPA simulation

- ==> simulation in the LBF is shorter (optimal frame is the one of the wake) ==> OK <u>iff</u> backwards propagating waves are negligible!
- ==> diagnostic more complicated (LBF ↔ LF loss of simultaneity)

The INF&RNO framework: Lorentz Boosted Frame modeling/2

- LBF modeling implemented in INF&RNO/fluid (INF&RNO/PIC underway):
 - ' input/output in the Lab frame (swiping plane*, <u>transparent</u> for the user)
 - no instability observed at high γ_{LBF} (reported in 2D/3D PIC runs)
 - \cdot some of the approx. in the envelope model are not Lorentz invariant (limit max $\gamma_{\rm LBF}$)

The INF&RNO framework: particle resampling to reduce noise

- "adaptive" **particle resampling** (useful for "quick" runs)
 - numerical particles loaded \sim uniformly in the computational domain
 - charge of a particle $q_i \propto r_{0,i}$ (particles born at large radii are "heavier")
 - "heavy" particles generate "spikes" in density/current when $r_{\rm i}\sim 0$

 \rightarrow particles are **split** into fragments as $r_{i} \rightarrow 0$

- drawbacks: small violation of the local charge/energy conservation (total charge and momentum are conserved), heating of the plasma

Benchmark 1/3: laser pulse velocity

Propagation velocity of a low intensity (a_0 =0.01) laser pulse* in vacuum or plasma

*Schroeder, et al., Phys. Plasmas (2011)

Benchmark 2/3: comparison with "full" 3D PIC/1

Comparison with VORPAL and OSIRIS*

a_0	$k_p W_0$	k_0/k_p	numerics
2,4	5.7	11.2	$k_{ ho}\Delta\xi=1/30,k_{ ho}\Delta r=1/10$, 20ppc, QSF

* Paul et al., Proc. of AAC08 (2008)

Benchmark 3/3: comparison with "full" 3D PIC/2

Comparison with 3D PIC code ALaDyn*

$n_0 [{ m e}/{ m cm}^3]$	k_0/k_p	a_0	au [fs]	$w_0 \; [\mu m]$	L _{sym} [mm]
$3\cdot 10^{18}$	24	5	30	16	3.2

box: 23×20 - res: $1/30 \times 1/20$ - $\Delta t = 0.25\Delta z$ - QSF - split [2] - filter [250]

* Benedetti et al., IEEE TPS (2008); Benedetti et al., NIM A (2009)

Performance of INF&RNO

- code written in C/C++ & parallelized with MPI (1D longitudinal domain decomp.)
- code performance on a MacBookPro laptop (2.5GHz, 4GBRAM, 1333MHz DDR3)

FLUID (RK2)	PIC (RK4)	
0.8 µs / (grid point * time step)	1.1 µs / (particle push * time step)	

- Examples of simulation cost
 - ✓ 100 MeV stage (~10¹⁹ cm⁻³, ~ mm) / PIC → ~10² CPUh
 - ✓ 1 GeV stage (~10¹⁸ cm⁻³, ~ cm) / PIC → ~10³-10⁴ CPUh
 - ✓ 10 GeV stage quasi-lin. (~10¹⁷ cm⁻³, ~m) / FLUID → ~10³ CPUh
 - ✓ 10 GeV stage quasi-lin. (~10¹⁷ cm⁻³, ~m) / FLUID + LBF[γ_{LBF} =10] → ~20 CPUh
 - ✓ 10 GeV stage bubble (~10¹⁷ cm⁻³, ~ 10 cm) / PIC → ~10⁴-10⁵ CPUh

==> gain between 2 and 5 orders of magnitude in the simulation time

INF&RNO is used to successfully model current experiments at LOASIS

Tunable laser plasma accelerator based on longitudinal density tailoring*

Electrons **injected** at density gradient + **coupling** of injected electrons to a lower density, separately tunable plasma for further **acceleration**.

^{*} Gonsalves *et al.*, Nature Phys. (2011)

INF&RNO is used to successfully model current experiments at LOASIS

Tunable laser plasma accelerator based on longitudinal density tailoring*

^{*} Gonsalves et al., Nature Phys. (2011)

10 GeV-class LPA stage (BELLA) in the (nonlinear) bubble regime

BELLA laser: $T_{laser} \sim 40 \text{ fs}$, $E_{laser} \sim 40 \text{ J}$ (~ 1 PW) plasma density laser intensity lineouts Plasma channel, n ≈3x10¹⁷ e/cm³ =0.7 cm 8E_= 50 GV/m laser envelope E_/E 10 ×° 8 -15 10 =7.0 cm laser envelope self-injection 9 peak 4 E_/E 2 × ×° self-injection 4 =10.0 cm laser envelope laser diffracts without 6 channel even if P/P ~ 12 E_{J}/E_{0} 2 2 10 0 ×° z [cm] -2 -4 ⁻⁹ (z-ct)

Simulation cost: < 10^5 kCPUh (gain ~ 10^3) [NERSC] k (z-ct)

10 GeV-class quasi-monoenergetic beams can be obtained in ~ 10 cm capillary

Conclusions

The INF&RNO computational framework has been presented

- features: envelope, ponderomotive, 2D cylindrical, PIC/Fluid integrated, LBF, parallel
- the code is several orders of magnitude faster
 compared to "full" PIC, while still retaining physical
 fidelity
- * the code has been widely benchmarked and validated
- modeling of future BELLA experiments show 10 GeV-class beams in ~ 10 cm

Plasma density

