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Overview

● challenges in modeling laser-plasma accelerators (LPAs) over 
distances ranging from cm to m scales

● the code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde)
✔ basic equations, numerics and features of the code 
✔ validation tests and performance

● applications 
✔ modeling of current LOASIS experiments (tunable LPA) 
✔ modeling of 10 GeV LPA stage for BELLA (BErkeley Lab Laser Accelerator)

● conclusions



Laser-plasma accelerators*:
1-100 GV/m accelerating gradients
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ponderomotive force:
F

p
 ~ - (1/2γ) grad (a2/2)

● Wakefields (due to charge separation: ion at rest VS displaced electrons)
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p
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e.g.: for n
0
 ~ 1018 cm-3, I

0
~ 1018 W/cm2 ===> E

z
 ~ 100 GV/m,

~ 103 larger than conventional RF accelerators 

*Tajima and Dawson, PRL (1979)



Energy gain in a (single stage) LPA 

laser

e-bunch

Limits to single stage energy gain:

✔ laser diffraction (~ Rayleigh range) 
→  mitigated by transverse plasma density tailoring (plasma channel) 

and/or self-focusing
✔ beam-wave dephasing: 
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→ mitigated by longitudinal density tailoring
✔ laser energy depletion → energy loss into plasma wave excitation  
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Experimental demonstration: 
1 GeV high-quality beam from LPA 

GeV e-bunch produced from cm-scale 
plasma (using 1.5 J, 46 fs laser, focused 
on a 3.3 cm discharge capillary with a 
density of 4x1018 cm-3)*  

*Leemans et al., Nature Phys. (2006); Nakamura et al., Phys. Plasmas (2007)

E=1012 MeV 
dE/E = 2.9%
1.7 mrad

3.3cm



3D full-scale modeling of an LPA over 
cm to m scales is a challenging task 

laser 
pulse

plasma
waves

laser 
wavelength (λ
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)

~ μm

laser length (L)  ~ few tens of μm

plasma wavelength 
(λ

p
)

~10 μm @ 1019 cm-3

|~30 μm @ 1018 cm-3   

~100 μm @ 1017 cm-3 

interaction length 
(D)

~ mm @ 1019 cm-3 → 100 MeV
~ cm @ 1018 cm-3 → 1 GeV
~ m @ 1017 cm-3 → 10 GeV λ
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Simulation complexity: 
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)4/3 [if D is deph. length]

3D explicit PIC simulation:
✔ 104-105 CPUh for 100 MeV stage
✔ ~106 CPUh for 1 GeV stage|
✔ ~107 -108 CPUh for 10 GeV stage|

bunch



What we need (from the computational point of view):

● run 3D simulations (dimensionality matters!) of cm/m-scale laser-plasma 
interaction in a reasonable time (a few hours/days)|

• perform, for a given problem, different simulations (exploration of the 
parameter space, optimization, convergence check, etc..)
|

The INF&RNO framework: motivations

Boosted Lorentz Frame*
[drawbacks/issues: control of 

numerical instabilities, self-injection 
to be investigated, under-resolved 

physics (e.g. RBS)]

      Reduced Models#,%,^,&,@

[drawbacks/issues: neglecting some 
aspects of the physics depending 

on the particular approximation made]

* Vay, PRL (2007)

# Mora & Antonsen, Phys. Plas. (1997) [WAKE]
% Huang, et al., JCP (2006) [QuickPIC]
^ Lifshitz, et al., JCP (2009) [CALDER-circ]
& Cowan, et al., JCP (2011) [VORPAL/envelope]
@ Benedetti, et al., AAC2010 + submitted (2012) [INF&RNO] 



● envelope model for the laser
✔ no λ

laser
 

✔ axisymmetric

● 2D cylindrical (r-z) 
✔ self-focusing & diffraction for the laser as in 3D
✔ significant reduction of the computational complexity

    ... but only axisymmetric physics

● ponderomotive approximation to describe laser → plasma interaction|
✔ (analytical) averaging over fast oscillations in the laser field 
✔ => scales @ λ

laser
 are removed from the plasma model

● PIC & (cold) fluid 
✔ fluid → noiseless and accurate for linear/mildly nonlinear regimes
✔ integrated modalities (e.g., PIC for injection, fluid acceleration)
✔ hybrid simulations (e.g., fluid background + externally injected bunch)

 
 * Benedetti et al., Proc. of AAC10 (2010); Benedetti et al., Proc. of PAC11 (2011); Benedetti et al., JCP, submitted

INF&RNO* is orders of magnitude faster than 
full PIC codes still retaining physical fidelity

INF&RNO ingredients:

laser field

envelope of the laser

k
p
(z-ct)



The INF&RNO framework: 
physical model

The code adopts the ”comoving” normalized variables ξ = k
p
(z − ct), τ = ω

p
t

● laser pulse (envelope)

● wakefield (fully electromagnetic)

● plasma 

where δ is the density and J the current density  

* deep into depletion
* rel. invariance
* backwards propag waves



The INF&RNO framework: 
numerical aspects

● longitudinal derivatives: 
  - 2nd order upwind FD scheme → (∂

ξ
f)

i,j
=(-3f

i,j 
+ 4f

i+1,j
- f

i+2,j
) /2Δ

ξ
- BC easy to implement (unidirectionl “information” flux using ξ)

 
  

● transverse (radial) derivatives:
- 2nd order centered FD scheme| → (∂

r
f)

i,j
=(f

i,j+1
- f

i,j-1
) /2Δ

r

- fields are not singular in r=0, from symmetry we have

● time integration for plasma / EM wakefield: RK2 [fluid] / RK4 [PIC]
|
● quadratic shape function for force interpolation/current deposition [PIC]

● digital filtering for current and/or fields smoothing [PIC] 
- N*binomial filter (1, 2, 1)|+ compensator

- compact low-pass filter*: βFi-1+Fi+ βFi+1 =| ∑k=0,2 ak
(β) (fi+k+ fi-k)/2 

 

  

* Shang, JCP (1999)



● envelope description: a
laser

= â exp[ik
0
(z-ct)]/2 + c.c.

- early times: NO need to resolve λ
0 
(~ 1 μm), only L

env 
~ λ

p
(~ 10-100 μm)|

- later times: laser-pulse redshifting → structures smaller than L
env  

arise 
in â (mainly in Re[â] and Im[â]) and need to be captured*|

“slow”    “fast”

The INF&RNO framework: 
improved laser envelope solver/1

a
0
=1.5, k

0
/k

p
=20, L

env
 = 1

Is it possible to have 
a good description 
of a depleted laser 
at a reasonably low 

resolution?

* Benedetti at al., AAC2010
   Cowan et al., JCP (2011)
   W. Zhu et al., POP (2012)



● envelope evolution equation is discretized in time using using a 2nd 
order Crank-Nicholson scheme  

    

The INF&RNO framework: 
improved laser envelope solver/2

Re(â)

k
p
ξ k

p
ξ

■ polar
o cartesian
– analytical

∂
ξ
(Re[â])

(cartesian)

(polar)

|â|

● FD form for ∂/∂ξ → unable to deal with unresolved structures in â

● INF&RNO uses a polar representation for â when computing ∂/∂ξ  

smoother behavior
compared to Re[â] and Im[â] 

laser envelope
(cartesian)

(polar)



The INF&RNO framework: 
improved laser envelope solver/3

1D sim.: a
0
=1, k

0
/k

p
=100, L

rms
 = 1 (parameters of interest for a 10 GeV LPA stage)

pump depletion length (resonant pulse): L
pd 

≈ λ
p
3/λ

0

2 ≈ 80 cm



The INF&RNO framework: Lorentz 
Boosted Frame* (LBF) modeling/1

● The spatial/temporal scales involved in a LPA simulation DO NOT scale in 
the same way changing the reference frame

* Vay, PRL (2007); Vay, et al., JCP (2011)

==> the LF is not the optimal frame to run a LPA simulation
==>|simulation in the LBF is shorter (optimal frame is the one of the wake)
==> OK iff backwards propagating waves are negligible!
==>|diagnostic more complicated (LBF ↔ LF loss of simultaneity) 



The INF&RNO framework: Lorentz 
Boosted Frame modeling/2

● LBF modeling implemented in INF&RNO/fluid (INF&RNO/PIC underway):    |    
✔ input/output in the Lab frame (swiping plane*, transparent for the user)|
✔ no instability observed at high γ

LBF
 (reported in 2D/3D PIC runs)

✔ some of the approx. in the envelope model are not Lorentz invariant (limit 
max γ

LBF
)
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* Vay, JCP (2011)



The INF&RNO framework: particle 
resampling to reduce noise

● “adaptive” particle resampling (useful for “quick” runs)
- numerical particles loaded ∼ uniformly in the computational domain
- charge of a particle q

i
 ∝ r

0,i
 (particles born at large radii are ”heavier”)

- ”heavy” particles generate ”spikes” in density/current when r
i
 ∼ 0  

                  → particles are split into fragments as ri → 0
- drawbacks: small violation of the local charge/energy conservation (total    

        charge and momentum are conserved), heating of the plasma 

trapped particle orbit

laser

ζ

x



Benchmark 1/3: laser pulse velocity
Propagation velocity of a low intensity (a

0
=0.01) laser pulse* in vacuum or plasma

*Schroeder, et al., Phys. Plasmas (2011)
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Benchmark 2/3: comparison with 
“full” 3D PIC/1 

* Paul et al., Proc. of AAC08 (2008)

Comparison with VORPAL and OSIRIS*



Benchmark 3/3: comparison with 
“full” 3D PIC/2 

* Benedetti et al., IEEE TPS (2008); Benedetti et al., NIM A (2009)

Comparison with 3D PIC code ALaDyn*

ALaDyn(3D)        INF&RNO(2Dc)

ct=0.2 mm

ct=3.0 mm



Performance of INF&RNO
● code written in C/C++ &  parallelized with MPI (1D longitudinal domain decomp.)

● code performance on a MacBookPro laptop (2.5GHz, 4GBRAM, 1333MHz DDR3)

● Examples of simulation cost

✔ 100 MeV stage (~1019 cm-3, ~ mm) / PIC → ~102 CPUh
✔ 1 GeV stage (~1018 cm-3, ~ cm) / PIC → ~103–104 CPUh|
✔ 10 GeV stage quasi-lin. (~1017 cm-3, ~m) / FLUID → ~103 CPUh|
✔ 10 GeV stage quasi-lin. (~1017 cm-3, ~m) / FLUID + LBF[γ

LBF
=10] →|~20 CPUh

✔ 10 GeV stage bubble (~1017 cm-3, ~ 10 cm) / PIC → ~104–105 CPUh

  

==> gain between 2 and 5 orders 
of magnitude in the simulation time 

FLUID (RK2) PIC (RK4)

 0.8 μs / (grid point * time step) 1.1  μs / (particle push * time step) 



 INF&RNO is used to successfully model 
current experiments at LOASIS

Tunable laser plasma accelerator based on longitudinal density tailoring*

 * Gonsalves et al., Nature Phys. (2011)

gasjet capillary (plasma channel) Electrons injected at density gradient + coupling of 
injected electrons to a lower density, separately 
tunable plasma for further acceleration. 

e-bunch 
injection

 injecto
r

acc
elerat

or



 INF&RNO is used to successfully model 
current experiments at LOASIS

Tunable laser plasma accelerator based on longitudinal density tailoring*
gasjet capillary (plasma channel)

e-bunch 
injection

Final energy

 injecto
r

acc
elerat

or

 * Gonsalves et al., Nature Phys. (2011)

Electrons injected at density gradient + coupling of 
injected electrons to a lower density, separately 
tunable plasma for further acceleration. 



10 GeV-class LPA stage (BELLA) 
in the (nonlinear) bubble regime

BELLA laser: T
laser

 ~ 40 fs, E
laser

 ~ 40 J (~ 1 PW)
Plasma channel, n

0
≈3x1017 e/cm3  
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Simulation cost: < 105 kCPUh (gain ~ 103) [NERSC]

E
0
= 50 GV/m

← laser diffracts without 
channel even if P/P

c
 ~ 12



10 GeV-class quasi-monoenergetic beams 
can be obtained in ~ 10 cm capillary
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longitudinal phase space @ z = 10 cm
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Conclusions

The INF&RNO computational framework has been presented

✔ features: envelope, ponderomotive, 2D cylindrical, 
PIC/Fluid integrated, LBF, parallel

✔ the code is several orders of magnitude faster 
compared to “full” PIC, while still retaining physical 
fidelity

✔ the code has been widely benchmarked and validated

✔ modeling of future BELLA experiments show 10 GeV-class 
beams in ~ 10 cm 
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