

Simulation of space effects during multiturn injection into the GSI SIS18 synchrotron

Sabrina Appel, GSI, Accelerator physics department

Outline

- SIS18 upgrade program for FAIR: Optimization of the multiturn injection
- Multiturn injection into SIS18: Horizontal betatron stacking
- Model of the injection bump
 - Analytic solution
 - Approximation
- Simulation code: PATRIC
- MTI simulation studies
 - Validation of the approximation
 - Comparison between experiments and simulations
 - Impact of space charge on MTI efficiency
- Summary and Outlook

SIS18 upgrade program Optimization of the MultiTurn Injection (MTI)

- SIS18 upgrade to increase the beam intensity
- Crucial point: Optimization of MTI
- Minimal beam loss:
 - To achieve design intensities
 - Dynamic vacuum pressure
- Max. number of inj. turns are limited by SIS18 acceptance and UNILAC beam emittance
- Impact of space charge on MTI efficiency
- Development of detailed simulation model
- Comparison between experiments and simulations
- Validation of the current model used in operation control program (SISMODI)

	UNILAC	SIS18
Reference primary ion	U ²⁸⁺	U ²⁸⁺
Reference energy (MeV)	11.4	200
lons per bunch/ cycle	1.5E10	1.5E11
Hor. Emittance (rms)	2-3	50

UNII AC

SIS18

SIS100/300

Multiturn injection into SIS18

"Horizontal betatron Stacking"

- Liouvile's theorem: Injection only into free phase space
- Betatron oscillation and changing of orbit bump → free phase space
- Loss of ions at the septum due to the betatron oscillation

 $n_{mti}\epsilon_i$

 $D = \frac{\epsilon_f}{-\epsilon_f}$ Dilution during injection

Model of the injection bump

Analytic solution

Four bumpers:

No distortion outside

Degrees of freedom x_c and x'_c

C.J. Gardner, BOOSTER TECHNICAL NOTE NO. 197, 1991

injection region

 The kick angle for given x_c and x'_c and no orbit distortion outside injection region

$$\varphi_{1} = \frac{-b_{41}\varphi_{3} - b_{42}\varphi_{4}}{b_{43}} \qquad \varphi_{2} = \frac{b_{31}\varphi_{3} + b_{32}\varphi_{4}}{b_{43}}$$
$$\varphi_{3} = \frac{d_{I2}x_{c} - b_{I2}x_{c}}{b_{21}} \qquad \varphi_{4} = \frac{-d_{I1}x_{c} + b_{I1}x_{c}}{b_{21}}$$

 Dependence on the beta function and phase advance

$$b_{ji} = \sqrt{\beta_j \beta_i} \sin(\phi_j - \phi_i)$$
$$d_{ji} = \sqrt{\frac{\beta_i}{\beta_j}} \cos(\phi_j - \phi_i) - \frac{\alpha_j}{\beta_j} b_{ji}$$

5

Model of the injection bump Approximation for SISMODI

- SISMODI does not know precisely the phase advance and beta function
- Approximation of analytic solution in SISMODI:

- Calculate bumper kick angle for several tunes
 - $\varphi_1; \varphi_2$ -> Linear function

 $\varphi_3; \varphi_4 \rightarrow \text{Quadratic function}$

Degree of freedom x_c' now fixed, x_c stays free

Simulation code PArticle TRackIng Code (PATRIC)

- Pic class (representation of particles)
 - Number of particles increases during injection and decreases by losses
- SectorMap + BeamLine class (container for ion optical elements)
 - Input from MADX
 - Transport of particles
- Several classes to represent particle kicks
 - Self-consistent space charge kicks
 - Poisson's equation is solved on 2D transverse grid
- Bump class (represents injection kickers)
- Talk by O. Boine-Frankenheim in Tuesday morning session

MTI simulation studies

Movie of a MTI without space charge effects

MTI simulation studies Validation of the SISMODI model

- SISMODI expected are beamlets with x'= 6.5 mrad
- In transfer channel correction devices x and x' can be modified
- Not possible during injection to measure x and x'
- Effect of mismatched beam slope on the MTI efficiency:
 - Mated beam: Loss maxima at resonance condition (q_xn=m)
 - Mismatched beam: Larger losses between 4.0-4.3 + maxima are shifted

-> Change loss dependency on horizontal tune

MTI simulation studies

Comparison between experiments and simulation

- Simulation settings:
 - Machine settings of x_c= 90 mm and Δx_c=2.5 mm per turn
 - SISMODI Model
 - Mesaured beamlet emittance
- Measurement results provided by Y. El-Hayek, GSI
- The loss maxima are located at the same fractional tunes

• The choice of x' is important for the good agreement

MTI simulation studies

Movie of a MTI with space charge effects

MTI simulation studies Impact of space charge on MTI efficiency

- The loss maxima and minima are shifted
- The maxima at 4.3 is shifted by ~0.03
- Single beamlet tune shift is dQ_x=0.06, dQ_y=0.04
- The high working point is Q_x=4.17

Summary and Outlook

Summary:

- Validation of the approximation
 - SISMODI model depends very sensitively on beamlet divergence angle
- Comparison between experiments and simulation
 - For low beam currents a good agreement is obtained
- Impact of space charge on MTI efficiency
 - Strongly changes of the particle distribution
 - Affects the losses (strength depends on the horizontal tune)

Outlook:

- Further well controlled measurements at low and high currents are planned
- Other injection schemes: like non-linear ramp
- Full 3D space charge simulations with PY-ORBIT are planned to validate and understand the space charge effects