

Automatic Computer Algorithms for Beam-Based Setup of the LHC Collimators

Gianluca Valentino

with contributions from:

R. W. Assmann, R. Bruce, S. Redaelli,

B. Salvachua, N. Sammut, D. Wollmann

ICAP'12 - Rostock-Warnemünde, 20 August 2012

L-Università ta' Malta

- LHC Collimation System
- Collimator Beam-Based Alignment
- Alignment Algorithms
 - BLM feedback loop
 - Parallel collimator alignment
 - BLM spike recognition
 - Loss threshold selection
 - BPM-guided coarse alignment
- Results
- Summary

The Large Hadron Collider

UNIVERSITY OF MALTA L-Università ta' Malta

- The LHC at CERN is the largest and most powerful particle accelerator in the world.
- Nominal parameters:

Circumference: 27 km, Energy: 7 TeV, Intensity = 3.23E14, Peak Lumi IP1/5 = 1E34 cm⁻²sec⁻¹

Gianluca Valentino

LHC Collimation System

- The LHC is protected by a **collimation system** with 100 collimators.
- Each cleaning collimator consists of **two moveable jaws** made of carbon or tungsten.
- The jaws are positioned symmetrically around the beam.

✤ intercept beam halo particles which could quench the super-conducting magnets.

360 MJ proton beam

UNIVERSITY OF MALTA L-Università ta' Malta

LHC Collimators | Beam: B1 | Set: HW Group:LHC COLLIMATORS 15-09-2011 22:36:23 TCSG.D5R7.B1 L(mm) MDC IP1 PRS R(mm) TCLA.7R3.B1 4.28 -4.443.22 -3.8 24.88 TCL5R1.B1 -25.13 IP5 TCSG.E5R7.B1 3.49 -3.58 TCTH.4L1<mark>.B1</mark> 11.05 -10.16 6.4 TCTH.4L5.B1 -14.9 TCSG.6R7.B1 -5.02 4.49 TCTVA.4L1.B1 TCTVA.4L5.B1 9.24 -4.28 7.73 -5.87 TCLA.A6R7.B1 4.04 -3.42 IP2 TCL5R5.B1 24.84 -25.14 TCLA.B6R7.B1 6.48 -7.19TCTH.4L2.B1 5.24 -5.68 IP6 TCLA.C6R7.B1 -5.44 7.92 TDI.4L2 -20.02 7.14 TCDQA.A4R6.B1 19.95 TCLA.D6R7.B1 4.23 -4.54 TCTVB.4L2 TCSG.4R6.B1 8.6 -2.91 7.19 -5.83 TCLA.A7R7.B1 4.15 -4.48 IP7 TCDD.4L2 0.69 -0.7 IP8 TCP.D6L7.B1 2.02 -1.0824.97 TCLIA.4R2 -24.99 TCTH.4L8.B1 11.87 0.68 TCP.C6L7.B1 TCLIB.6R2.B1 -24.98 1.76 -2.5124.85 TCTVB.4L8 6.35 -6.84 TCP.B6L7.B1 IP3 1.16 -2.42 TI2 TCP.6L3.B1 TCSG.A6L7.B1 4.12 -4.33 2.42 -3.14TCDIV.20607 1.4 -1.98TCSG.5L3.B1 TCSG.B5L7.B1 -4.34 2.74 2.88 -3.72TCDIV.29012 2.66 -1.74TCSG.4R3.B1 TCSG.A5L7.B1 1.29 -3.62 3.23 -3.5 CDIH.29050 3.77 -3.29 TCSG.A5R3.B1 TCSG.D4L7.B1 2.74 -3.56 2.23 -2.1 TCDIH.29205 2.4 -2.06TCSG.B4L7.B1 TCSG.B5R3.B1 -4.14 3.01 4.08 -2.1TCDIV.29234 3.37 -2.24 TCLA.A5R3.B1 TCSG.A4L7.B1 -7.64 3.88 -2.12TCDIH.29465 6.64 2.96 -2.3 CSG.A4R7.B1 TCLA.B5R3.B1 -7.02 3.87 6.22 -2.24TCDIV.29509 9.02 -2.9 TCLA.6R3.B1 TCSG.B5R7.B1 6.18 -6.1 3.76 -3.24 Left Right BETATRON_HOR BETATRON_VER OFFMOMENTUM_POS_DP OFFMOMENTUM_NEG_DP

Gianluca Valentino

CERN

UNIVERSITY OF MALTA L-Università ta' Malta

LHC Collimators Beam: B1 Set: HW Group:LHC COLLIMATORS 15-09-2011 22:36:23 L(mm) MDC IP1 PRS R(mm) 4.28 TCLA.7R3.B1 -4.44 3.22 TCSG.D5R7.B1 -3.8

BETATRON_HOR		BE	BETATRON_VER		OFFMOMENTUM_POS_DP		OFFMOMENTUM_NEG_DP	
6.18	TCLA.6R <mark>3.B1</mark>	-6.1	3.76	TCSG.B5R7.B1	-3.24	Left		Right
6.22	TCLA.B5R3.B1	-7.02	3.87	TCSG.A4R7.B1	-2.24	9.02	TCDIV.29509	-2.9
6.64	TCLA.A5R3.B1	-7.64	3.88	TCSG.A4L7.B1	-2.12	2.96	TCDIH.29465	-2.3
3.01	TCSG.B5R3.B1	-4.14	4.08	TCSG.B4L7.B1	-2.1	3.37	TCDIV.29234	-2.24
2.74	TCSG.A5R3.B1	-3.56	2.23	TCSG.D4L7.B1	-2.1	2.4	TCDIH.29205	-2.06
1.29	TCSG.4R3.B1	-3.62	3.23	TCSG.A5L7.B1	-3.5	3.77	TCDIH.29050	-3.29
2.74	TCSG.5L3.B1	-4.34	2.88	TCSG.B5L7.B1	-3.72	2.66	TCDIV.29012	-1.74
4.12	TCP.6L3.B1	-4.33	2.42	TCSG.A6L7.B1	-3.14	1.4	TCDIV.20607	-1.98
	IP3		1.16	TCP.B6L7.B1	-2.42		TI2	
24.85	TCLIB.6R2.B1	-24.98	1.76	TCP.C6L7.B1	-2.51	6.35	TCTVB.4L8	-6.84
24.97	TCLIA.4R2	-24.99	2.02	TCP.D6L7.B1	-1.08	11.87	TCTH.4L8.B1	0.68
0.69	TCDD.4L2	-0.7		IP7			IP8	
8.6	TCTVB.4L2	-2.91	7.19	TCSG.4R <mark>6.B1</mark>	-5.83	4.15	TCLA.A7R7.B1	-4.48
19.95	TDI.4L2	-20.02	7.14	TCDQA.A4R6.B1		4.23	TCLA.D6R7.B1	-4.54
5.24	TCTH.4L2.B1	-5.68		IP6		7.92	TCLA.C6R7.B1	-5.44
	IP2		24.84	TCL5R5.B1	-25.14	6.48	TCLA.B6R7.B1	-7.19
9.24	TCTVA.4L1.B1	-4.28	7.73	TCTVA.4L5.B1	-5.87	4.04	TCLA.A6R7.B1	-3.42
11.05	TCTH.4L1 <mark>.B1</mark>	-10.16	6.4	TCTH.4L5.B1	-14.9	4.49	TCSG.6R7.B1	-5.02
24.88	TCL5R1.B1	-25.13		IP5		3.49	TCSG.E5R7.B1	-3.58
L(mm) MDC	IP1 PR	(SR(mm)	4.28	TCLA.7R3.B1	-4.44	3.22	TCSG.D5R7.B1	-3.8

Green: OK Red: Interlock/Error

Gianluca Valentino

CÊRN

UNIVERSITY OF MALTA L-Università ta' Malta

Gianluca Valentino

CERN

UNIVERSITY OF MALTA L-Università ta' Malta

Gianluca Valentino

CERN

- Collimator jaws are positioned symmetrically around the beam to form a 4-stage hierarchy.
- The beam centre and beam size at each collimator location must be known.

- Collimator jaws are positioned symmetrically around the beam to form a 4-stage hierarchy.
- The beam centre and beam size at each collimator location must be known.

- Collimator jaws are positioned symmetrically around the beam to form a 4-stage hierarchy.
- The beam centre and beam size at each collimator location must be known.

UNIVERSITY OF MALTA L-Università ta' Malta

Triplet

- Collimator jaws are positioned symmetrically around the beam to form a 4-stage hierarchy.
- The beam centre and beam size at each collimator location must be known.
- magnet TCT TCDQ / TCSG IR6 TCLA Tertiary Absorbers Dump TCSG Collimator Protection TCP Secondary Primarv Collimator Collimator Dump **Kicker** $N_i \cdot \sigma_i$ beam **BLM Collimator Jaw** Hadronic & Electromagnetic particle shower Halo Core Halo **LHC Beam Collimator Jaw**
- By touching the beam with each jaw, these values can be determined.
- The jaws moved to beam until a loss spike is seen on the Beam Loss Monitor (BLM).
- Loss spike shape depends on the jaw step size (µm) and the particle distribution in the transverse plane.

UNIVERSITY OF MALTA L-Università ta' Malta

1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.

Reference

collimator

UNIVERSITY OF MALTA L-Università ta' Malta

BLM_i

BLM_i

Collimator i

BLM_{REF} showers Both jaws of the TCP in the appropriate 1. 1 plane (Hor/Ver/Skew) are aligned to the Beam beam. The collimator *i* is aligned to the beam. 2. 2 **BLM**_{REF} Beam centre: $\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$ Beam

- Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator *i* is aligned to the beam.

Beam centre: $\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$

- Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator *i* is aligned to the beam.

Beam centre: $\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$

- Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator *i* is aligned to the beam.

Beam centre: $\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$

- Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator *i* is aligned to the beam.

Beam centre: $\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$

- Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator *i* is aligned to the beam.

Beam centre: $\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$

Beam size:
$$\sigma_i^m = \frac{x_i^{L,m} - x_i^{R,m}}{(n_1^{k-1} + n_1^{k+1})/2}$$

2. The collimator *i* is aligned to the beam.

Beam centre: $\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$

3. The TCP is realigned to determine the beam size at collimator *i*.

Beam size:
$$\sigma_i^m = \frac{x_i^{L,m} - x_i^{R,m}}{(n_1^{k-1} + n_1^{k+1})/2}$$

4. Collimator *i* is retracted to the new operational settings.

- Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator *i* is aligned to the beam.

Beam centre: $\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$

3. The TCP is realigned to determine the beam size at collimator *i*.

Beam size:
$$\sigma_i^m = \frac{x_i^{L,m} - x_i^{R,m}}{(n_1^{k-1} + n_1^{k+1})/2}$$

4. Collimator *i* is retracted to the new operational settings.

Gianluca Valentino

- Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator *i* is aligned to the beam.

Beam centre: $\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$

3. The TCP is realigned to determine the beam size at collimator *i*.

Beam size:
$$\sigma_i^m = \frac{x_i^{L,m} - x_i^{R,m}}{(n_1^{k-1} + n_1^{k+1})/2}$$

4. Collimator *i* is retracted to the new operational settings.

$$x_i^{L,set} = \Delta x_i + N_i \sigma_i^m \quad x_i^{R,set} = \Delta x_i - N_i \sigma_i^m$$

Gianluca Valentino

Automatic Collimator Alignment

- Motivation:
 - Manual collimator alignment is a time-consuming and expensive process (LHC running costs = ~€ 150K / hour).
 - 4 alignments are required for different machine modes:- injection at 450 GeV, flat top, squeezed non-colliding and colliding beams at 4 TeV.
 - Frequent, fast alignments:
 smaller hierarchy margins (i.e. smaller β*) + more time for physics = more luminosity.
- Alignment algorithms were developed and introduced in an iterative process.
- The work is part of computer science PhD at CERN and the University of Malta.

Automatic Collimator Alignment

UNIVERSITY OF MALTA L-Università ta' Malta

- Motivation:
 - Manual collimator alignment is a time-consuming and expensive process (LHC running costs = ~€ 150K / hour).
 - 4 alignments are required for different machine modes:- injection at 450 GeV, flat top, squeezed non-colliding and colliding beams at 4 TeV.
 - Frequent, fast alignments:
 smaller hierarchy margins (i.e. smaller β*) + more time for physics = more luminosity.
- Alignment algorithms were developed and introduced in an iterative process.
- The work is part of computer science PhD at CERN and the University of Malta.

Gianluca Valentino

BLM Feedback Loop

BLM Feedback Loop

• A **BLM feedback loop** was implemented as a first step in automating the alignment.

BLM Feedback Loop

٠

A **BLM feedback loop** was implemented as a first step in automating the alignment.

- Feedback loop implemented in Java application in the top layer of the LHC Software Architecture (LSA).
- The application is operated in the CERN Control Centre (CCC).
- Semi-automatic alignment results published in PRST-AB.

Gianluca Valentino

Display

BLM Feedback Loop

L-Università ta' Malta

- A **BLM feedback loop** was implemented as a first step in automating the alignment.
- Feedback loop implemented in Java application in the top layer of the LHC Software Architecture (LSA).
- The application is operated in the CERN Control Centre (CCC).
- Semi-automatic alignment results published in PRST-AB.
- Input heuristics developed over 2 years of setups (2009 2011) by R. A β mann et al.

Input	Description	Heuristic
Δx_i^L	Left jaw step size in µm	5-20
Δx_i^R	Right jaw step size in µm	5-20
t^s_i	Time interval between each step in seconds	1 – 3
$S_i(t)$	BLM signal in Gy/s	5E-7 – 1E-4
S_i^{Thres}	Loss stop threshold in Gy/s	1E-6-2E-4

Gianluca Valentino

8 collimators moving TCSG.A4R7.B1 - BLM Value TCSG.A5L7.B1 - BLM Value Beam Loss (µGy/s) TCSG.A4L7.B1 in parallel — Threshold - Threshold - Threshold Jaw Gap 🗕 Jaw Gap - Jaw Gap Jaw Gap 11 (mm) 10.5 10 9.5 9.5 9 8.5 Beam Loss (µGy/s) TCSG.B5L7.B1 - BLM Value TCSG.B5R7.B1 - BLM Value TCSG.D5R7.B1 - BLM Value TCSG.E5R7.B1 - BLM Value - Threshold - Threshold - Threshold - Threshold 2 🗕 Jaw Gap - Jaw Gap - Jaw Gap – Jaw Gap 11 10.5 10 9.5 9.5 9 8.5 8∟ 0 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 Time (seconds) Time (seconds) Time (seconds) Time (seconds)

- Iterative algorithm to determine which collimator is at the beam after BLM signal crosstalk.
- Tested in MD (Machine Development) in July 2011.

Gianluca Valentino

UNIVERSITY OF MALTA L-Università ta' Malta

NO

NO

Are all collimators close

to the beam?

Start sequential alignment

YES

- Iterative algorithm to determine which collimator is at the beam ٠ after BLM signal crosstalk.
- Tested in MD (Machine Development) in July 2011. ٠

Gianluca Valentino

UNIVERSITY OF MALTA L-Università ta' Malta

UNIVERSITY OF MALTA

8-8 8-8

UNIVERSITY OF MALTA

8-8 8-8

UNIVERSITY OF MALTA

UNIVERSITY OF MALTA

8-8 8-8

UNIVERSITY OF MALTA

UNIVERSITY OF MALTA

UNIVERSITY OF MALTA

- Automatic classification of loss spikes is key to an automated setup procedure.
- Support Vector Machines (SVM):
 supervised-learning classification algorithm.

UNIVERSITY OF MALTA

- Automatic classification of loss spikes is key to an automated setup procedure.
- Support Vector Machines (SVM): supervised-learning classification algorithm.

UNIVERSITY OF MALTA

- Automatic classification of loss spikes is key to an automated setup procedure.
- Support Vector Machines (SVM):
 supervised-learning classification algorithm.

- Automatic classification of loss spikes is key to an automated setup procedure.
- Support Vector Machines (SVM):
 supervised-learning classification algorithm.

- Automatic classification of loss spikes is key to an automated setup procedure.
- Support Vector Machines (SVM):
 supervised-learning classification algorithm.
- A jaw is aligned to the beam when an optimal spike is observed. If the spike is non-optimal, the jaw has to be moved in again.

11

Feature Selection

3.5<u>× 1</u>0⁻⁵

2.5

Beam Loss (Gy/s) 5.1 5

0.5

01 1

L-Università ta' Malta

- Six features were selected to distinguish between optimal and non-optimal loss spikes.
- **1. Maximum BLM value** observed after the threshold is exceeded.
- 2. Average of the 3 smallest loss values of the 7 loss values preceding the maximum value.
- **3. Width** of the Gaussian fit applied to the loss spike folded about the maximum value.
- 4. Gaussian fit correlation coefficient.
- 5. Power fit exponent.
- 6. Power fit correlation coefficient.

SVM Training and Results

- **LIBSVM tool** in MATLAB was used for training and testing the SVM model.
- The data were linearly scaled to [-1, +1] to avoid values in larger numeric ranges dominating those in smaller ranges.
- Grid search performed on C (over-fitting vs. under-fitting penalty factor) and γ (width of RBF) using 5-fold cross-validation to determine the optimal values for these parameters.
- 444 samples were used (222 for training and 222 for testing).

SVM Training and Results

- **LIBSVM tool** in MATLAB was used for training and testing the SVM model.
- The data were linearly scaled to [-1, +1] to avoid values in larger numeric ranges dominating those in smaller ranges.
- Grid search performed on C (over-fitting vs. under-fitting penalty factor) and γ (width of RBF) using 5-fold cross-validation to determine the optimal values for these parameters.
- 444 samples were used (222 for training and 222 for testing).

Parameter	Value
Number of Features	6
Number of Classes	2
С	32768
γ	0.125
Kernel	RBF
Training dataset prediction	97.2973 %
Test dataset prediction rate	82.4324 %
Overall prediction rate	89.8649 %

Automatic Threshold Selection

- Collimator setup can be automated further if the loss threshold is automatically chosen.
- Samples of the steady-state BLM signal in 20 second intervals and the subsequent threshold set by operator were collected.
- The exponentially weighted moving average of each sample was determined.
- Larger weights assigned to most recent values.
- An exponential fit can be made to the data.
- The threshold can be calculated in terms of the steady-state BLM signal:

$$S_i^{Thres} = 0.53584e^{0.85916a}$$

BPM-guided Coarse Alignment

BPM-guided Coarse Alignment

- An approximation to the beam centers at the collimators can be obtained from an interpolation of the orbit measured by the Beam Position Monitors (BPMs).
- The interpolation can be exploited to speed up the alignment, assuming a measured average delta between beam-based alignment and interpolation of 550 µm.

BPM-guided Coarse Alignment

- An approximation to the beam centers at the collimators can be obtained from an interpolation of the orbit measured by the Beam Position Monitors (BPMs).
- The interpolation can be exploited to speed up the alignment, assuming a measured average delta between beam-based alignment and interpolation of 550 µm.
- All collimator left and right jaws can be moved directly to the coarse settings at a rate of 2 mm/s instead of 0.01 mm/s:

$$x_i^L = \Delta x_i^{int.} + (N_{TCP} + N_{margin}) \times \sigma_i^n + \frac{\Delta_{m,int.}}{2}$$
$$x_i^R = \Delta x_i^{int.} - (N_{TCP} + N_{margin}) \times \sigma_i^n - \frac{\Delta_{m,int.}}{2}$$

- $\Delta x_i^{int.}$: interpolated beam center at collimator *i*.
- N_{TCP} : half-gap of IR7 TCP in units of sigma.
- N_{margin} : further margin over and above the IR7 TCP cut.
- σ_i^n : the nominal 1-sigma beam size.
- $\Delta_{m,int.}$: the expected average delta between the interpolated and the measured center.

30

25

20

10

2010

No Automation

2011

BLM

Feedback

Letup [hours] 15

Total setup time depends on the beam time consumed, the number of beam dumps and the turnaround time:

 $T_{setup} = T_{beam} + d \times T_{turnaround}$

- 2010: manual alignment
- 2011: semi-automatic alignment at 1 Hz
- 2012: semi-automatic alignment at 8 Hz
- No costly beam dumps due to high losses from 2011 onwards.
- Use of smaller jaw step size (better accuracy) made easier by semi-automatic alignment.

Injection Setup Time ——— Injection Step Size Flat Top Setup Time - * - Flat Top Step Size 100

-90

80

70

$$T_{setup} = T_{beam} + d \times T_{turnaround}$$

- 2010: manual alignment
- 2011: semi-automatic alignment at 1 Hz
- 2012: semi-automatic alignment at 8 Hz
- No costly beam dumps due to high losses from 2011 onwards.
- Use of smaller jaw step size (better accuracy) made easier by semi-automatic alignment.

L-Università ta' Malta

Summary

- LHC collimation system cleaning efficiency is highly dependent on correct collimator positions.
- The jaw positions are determined from beam-based alignment, which can last > 20 hours when done manually.
- The BLM signals are used in a **feedback loop to automatically stop the jaw** once the losses exceed a pre-defined threshold, an indication that the jaw has possibly touched the beam halo.
- The **threshold is automatically set depending on the steady-state BLM signal** based on an empirical data analysis.
- **SVM-based loss spike classification** allows the setup software to move in the jaw further to obtain a sharper spike and ensure that the automatic alignment is reliable.
- The **BPM-interpolated orbit** allows for a coarse alignment of the jaws around the beam center with a safety margin to gain time.
- Automatic alignment algorithms have so far reduced the total setup time from 28 hours to 5.5 hours (factor 5 improvement) and minimized the possibility of human error.
- The **robustness of the loss spike classification algorithm** needs to be improved to counter noise in the BLM signal and provide a fully automatic collimator alignment software tool.

Acknowledgements

L-Università ta' Malta

- Research funded by EuCARD ColMat WP8
- LHC Collimation Project at CERN (PhD co-supervisor: Dr. Ralph Assmann)
- University of Malta (PhD co-supervisor: Dr. Ing. Nicholas Sammut)

360 MJ proton beam

Thank you for your attention!

Contact details:

gianluca.valentino@cern.ch

Gianluca Valentino

RESERVE SLIDES

Setup Application GUI

UNIVERSITY OF MALTA L-Università ta' Malta

Gianluca Valentino

Setup Application GUI

UNIVERSITY OF MALTA L-Università ta' Malta

Gianluca Valentino

L-Università ta' Malta

• Nominal to Measured Beam Size Ratio (B1 left, B2 right) at 3.5 TeV:

Alignment Results

UNIVERSITY OF MALTA L-Università ta' Malta

Alignment Results

UNIVERSITY OF MALTA L-Università ta' Malta

Alignment Results

UNIVERSITY OF MALTA L-Università ta' Malta

Collimation System Qualification

UNIVERSITY OF MALTA L-Università ta' Malta

betatron losses B1 4000GeV hor norm F (2012.04.02, 23:20:09)

Collimation System Qualification

UNIVERSITY OF MALTA L-Università ta' Malta

betatron losses B1 4000GeV hor norm IR7 (2012.04.02, 23:20:09)

betatron losses B1 4000GeV hor norm IR7 (2012.04.02, 23:20:09)

betatron losses B1 4000GeV hor norm IR7 (2012.04.02, 23:20:09)

betatron losses B1 4000GeV hor norm IR7 (2012.04.02, 23:20:09)

betatron losses B1 4000GeV hor norm IR7 (2012.04.02, 23:20:09)

