

www.kit.edu

Beam Simulations for FLUTE, a Linac Based Compact THz Source

Marcel Schuh for the FLUTE team ICAP 2012, Rostock-Warnemünde, Germany, MOACC1

Laboratory for Applications of Synchrotron Radiation (LAS) / Institute for Photon Science and Synchrotron Radiation (IPS)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Marcel.Schuh@kit.edu

Karlsruhe Institute of Technology

Outline

ICAP 2012 FLUTE@KI

- Motivation
- Linac and bunch compression design
- Simulations
 - Tools
 - Optimization
 - Error studies
- Outlook

Motivation From the users point of view

Single cycle (broadband) THz pulses and very high peak electric fields of the order of 3x10⁸ V/m

Motivation From the accelerator science point of view

- Study for a future compact, broadband accelerator based THz source
- Serve as a test bench for new beam diagnostic methods and tools
- Compare different coherent radiation generation schemes in simulation and experiment:
 - Coherent Synchrotron Radiation (CSR)
 - Coherent Transition Radiation (CTR)
 - Coherent Edge Radiation (CER)
- Systematic bunch compression studies:
 - Different compression schemes
 - Large charge range up to several nC per bunch → Study space charge and CSR induced effects and instabilities
- Test facility for accelerator studies within the Helmholtz "ARD" initiative

General linac layout

Laser	Unit	Value	Gun	Unit	Value	Linac	Unit	Value
Max. wavelength	nm	266	Frequency	GHz	2.998	Frequency	GHz	2.998
Energy on cathode	mJ	0.6	Cells		2.5	Length	m	5.2
Laser pulse length	ps	≤4	Peak E-Field	MV/m	~100	Acc. gradient	MV/m	~10
Laser spot size	mm	2.25	Peak power	MW	~20	Peak power	MW	~20
			Output energy	MeV	7	Output energy	MeV	~41
			Bunch charge	nC	≤3	Max. Rep. Rate	Hz	10-100

5 2012-08-20 M. Schuh - Beam Simulations for FLUTE, a Linac Based Compact THz Source - ICAP 2012, MOACC1

Karlsruhe Institute of Technology

Bunch compressor

- Goal: compress a negative chirped beam
- Phase one design
 - 4 bending magnets
 - Same length and strength
 - Mirror symmetry
- Beam dynamics effects
 - CSR
 - Space charge
- Present Layout
 - L_{d1} = 0.5 m
 - L_{d2} = 1.0 m
 - L_b = 0.3 m
 - $\rho(p) = 1.8$ to 2.2 m (charge dependent)
 - R₅₆ = 29 to 36 mm

Beam dynamics simulation tool chain

Gun

Linac

ASTRA

ASTRA

ELEGANT

Bunch Compressor

ASTRA

CSRtrack

ELEGANT

7

CSR effects

Wakes (planed)

Longitudinal phase space evolution for 100 pC

8 2012-08-20

M. Schuh - Beam Simulations for FLUTE, a Linac Based Compact THz Source - ICAP 2012, MOACC1

LAS/IPS ELUTE

Longitudinal phase space evolution for 3 nC

M. Schuh - Beam Simulations for FLUTE, a Linac Based Compact THz Source - ICAP 2012, MOACC1

FLUTE LAS/IPS

Parameter scans and optimization

- Global goal: Minimize the bunch length
- Parameters to optimize as function of the bunch charge:
 - Laser
 - Pulse length and profile
 - Spot size and transverse distribution
 - RF
 - Gun RF phase
 - Linac RF phase
 - Bunch compressor
 - Magnet length
 - Drift space
 - Bending radius
 - Focusing elements
 - Solenoid strength
 - Matching cell
 - Element position
- Method used up to now: Parameter scans

LAS/IPS

Laser spot size optimization

A Gaussian distribution is taken for the laser in the transverse plane as well as temporal

Parameter	Unit	Value
Charge	nC	3
Laser pulse length	ps	4
Laser spot size	mm	2.25
Solenoid	Т	0.05

ASTRA vs. CSRtrack

Optimize bunch compressor bending radius p for different bunch charges independently in ASTRA and CSRtrack

- Magnet length and drift space between magnets is 50 cm in this study
- ASTRA: 3D space charge with 1 Million macro particles
- CSRtrack: 3D space charge and CSR with 50000 macro particles

Charge	Laser pulse	ASTRA	CSRtrack	ASTRA	CSRtrack
		bunch length	bunch length	ρ	ρ
рС	ps	fs	fs	m	m
1	1	14.33	14.78	3.9	3.9
100	4	173.33	171.16	3.85	3.9
3000	4	250.00	429.6	3.45	3.4

M. Schuh - Beam Simulations for FLUTE, a Linac Based Compact THz Source - ICAP 2012, MOACC1 LAS/IPS

Optimization

- Parameters optimized using parameter scans
 - Laser spot size and pulse length
 - Bending radius

Charge	Laser pulse	Laser spot size	Bending radius	R ₅₆	Bunch Iength
рС	ps	mm	m	mm	fs
3000	4	2.25	1.9	36.1	183
1000	3	1.5	1.95	34.2	112
100	2	0.5	2.1	29.4	52
1	1	0.05	2.15	28	15

13 2012-08-20

Simulated longitudinal bunch shape after chicane

Derive analytically CSR, CER and CTR spectrum from these distributions

M. Schwarz, IPAC12, MOPPP003

Coherent synchrotron radiation spectrum

Error studies

Magnet errors

- Power supply
- Field
- Alignment
- RF and timing errors
 - Amplitude
 - Phase
 - Synchronization
 - RF to laser
 - Beam to experiment / diagnostic
- Laser shot to shot errors
 - Intensity
 - Spot position
 - Time jitter
- Element alignment errors

Bend power supply error study

LAS/IPS

- The compression depends on the bending field
- The bending radius is direct proportional to the magnet current
- Current stability better than 5.10⁻³ is needed

Synchronisation RF with laser

LAS/IPS ELUTE M. Schuh - Beam Simulations for FLUTE, a Linac Based Compact THz Source - ICAP 2012, MOACC1

RF linac phase scan

Constant phase in gun (reference working point)
Scan phase in linac relative to working point

RF error studies

20

Vary phase and amplitude together in gun and linac
Bunch charge: 3 nC

LAS/IPS ELUTE

Karlsruhe Institute of Technology

LAS/IPS

Outlook

- Finish start to end error studies to define tolerances for the power supplies, LLRF system and alignment
- Additional studies with ELEGANT and optimization with Multiobjective genetic algorithms (MOGA)
 - See also talk of M. Streichert TUABC2
- Finalize the linac layout including all devices (pumps, diagnostics, etc.)

Thank you for your attention!

Acknowledgment:

Ingrid Birkel, Hans-Heinrich Braun, Andreas Boehm, Steffen Doebert, Romain Ganter, Gunther Geschonke, Albert-Heinz Gies, Michael Hagelstein, Nicole Hiller, Erhard Huttel, Vitali Judin, Benjamin Kehrer, Richard Kubat, Ralf Lang, Sebastian Marsching, Anke-Susanne Mueller, Wolfgang Mexner, Somprasong Naknaimueang, Michael J. Nasse, Anton Plech, Robert Rossmanith, Michael T. Schmelling, Markus Schwarz, Lukas Stingelin, Pawel Wesolowski

LAS/IPS FLU

22 2012-08-20 M. Schuh - Beam Simulations for FLUTE, a Linac Based Compact THz Source - ICAP 2012, MOACC1