Latest Developments in 3D Charged Particle Simulations

Felix Wolfheimer, CST AG
CST STUDIO SUITE - Overview

CST MICROWAVE STUDIO®
Our Flagship Product for RF Simulations

CST CABLE STUDIO™
CST PCB STUDIO™
CST MICROSTRIPES™

Common Easy-To-Use Pre- and Post-processing Engine

CST DESIGN STUDIO™
Circuit Simulator
Coupling of 3D Models
System Assembly and Modeling

CST PARTICLE STUDIO®
Interaction of EM Fields with Free Moving Charges

CST MPHYSICS STUDIO™
Thermal and Mechanical Effects of EM Fields

CST EM STUDIO®
Simulations of Static or Low-Frequency Fields

RF Simulations for Special Applications
Tracking	Solver for particles in static fields including space charge or in harmonic fields excluding space charge.
Particle In Cell	Self-consistent transient field and particle solver including full space charge effects at all frequencies.
Wakefield	Transient solver with special beam excitation (predefined fixed straight beam path)
Tracking Algorithm

Workflow

1. Calculate electro- and magnetostatic fields.
2. Move particles according to the previously calculated force. Trajectories
3. Adjust trajectories/fields according to space-charge (gun iteration).

\[
\frac{d}{dt} (m\vec{v}) = q(\vec{E} + \vec{v} \times \vec{B})
\]

Velocity update

\[
\vec{r}_{n+1/2}^{n+1/2} = \vec{r}_{n+1/2}^{n} + q\Delta t \left(\vec{E}_{n+1/2}^{n} + \vec{v}_{n+1}^{n} \times \vec{B}_{n+1/2}^{n} \right)
\]

Leap Frog Scheme

Position update

\[
\vec{r}_{n+3/2}^{n+3/2} = \vec{r}_{n+1/2}^{n+1/2} + \Delta t \vec{v}_{n+1}^{n+1}
\]
Gun Iteration - Space Charge Effect

Gun Iteration

1. START
2. Calculate electrostatic field distribution
3. Track particles and monitor space-charge
4. Has space-charge converged?
 - Yes: Go to relaxation of space-charge
 - No: Go to calculate electrostatic field distribution
5. END

Without gun iteration:

With gun iteration:
Tracking Solver - Typical Application (I)

- Cathode
- Focussing electrode
- Anode
- Iron yoke (non linear)
- Permanent magnets

Electron Gun

E-static field

M-static field
Space charge effect is included via gun iteration and space charge limited emission.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking</td>
<td>Solver for particles in static fields including space charge or in harmonic fields excluding space charge.</td>
</tr>
<tr>
<td>Particle In Cell</td>
<td>Self-consistent transient field and particle solver including full space charge effects at all frequencies.</td>
</tr>
<tr>
<td>Wakefield</td>
<td>Transient solver with special beam excitation (predefined fixed straight beam path)</td>
</tr>
</tbody>
</table>
Particle in Cell (PIC) Algorithm

Self-consistent modeling of a collision free plasma.

Macro charges (e.g. $q=10^6$ e-)

Relativistic equation of motion

$$\frac{d}{dt}(m\vec{v}) = q(\vec{E} + \vec{v} \times \vec{B})$$

$$\frac{d\vec{r}}{dt} = \vec{v}$$

Current caused by particle motion acts as source in Maxwell’s equations.

$$\text{curl } \vec{H} = \frac{\partial\vec{D}}{\partial t} + \vec{J}; \quad \text{div } \vec{J} = -\frac{\partial \rho}{\partial t}$$

A priori charge conserving algorithm.
PIC Solver - Typical Applications (I)

- Particle Trajectory
- E-Field
- Waveguide Output Power
- Time signal
- DFT

Normalized Spectrum Magnitude

Time Signals

Frequency / GHz
PIC Solver - Typical Applications (II)

[1] Design, simulation and measurement conducted by M. Ruf, K. Thurn and L.-P. Schmidt at Chair for High Frequency Technology, University of Erlangen-Nuremberg
PIC Solver - Typical Applications (III)

CST PARTICLE STUDIO

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking</td>
<td>Solver for particles in static fields including space charge or in harmonic fields excluding space charge.</td>
</tr>
<tr>
<td>Particle In Cell</td>
<td>Self-consistent transient field and particle solver including full space charge effects at all frequencies.</td>
</tr>
<tr>
<td>Wakefield</td>
<td>Transient solver with special beam excitation (predefined fixed straight beam path)</td>
</tr>
</tbody>
</table>
Wakefield Solver

The Wakefield solver computes the wake potential:

$$
\tilde{W}(x, y, s) = \frac{1}{q_1} \int_{-\infty}^{\infty} \left(\tilde{E}(x, y, z, t = \frac{s + z}{v}) + \tilde{v} \times \tilde{B}(x, y, z, t = \frac{s + z}{v}) \right) dz
$$

- **Excitation (pencil beam with longitudinal Gaussian shape)**
- **Beam path**
- **Integration path**
Wakefield Solver - Typical Application

Beam Position Monitor

Note: Beta smaller than 1 is possible.
New Features Overview
Geometry Handling - Hexahedral Mesh

- CST has extended the numerical algorithms with enhanced material approximation techniques.

PBA (Perfect Boundary Approximation):
- Very accurate, but relies on valid CAD shapes.

FPBA (Fast PBA):
- Faster than PBA
- Can handle even CAD models with artifacts
- Less accurate as compared to PBA
Geometry Handling - Hexahedral Mesh

EFPBA is now the default algorithm used for solvers based on hexahedral meshes.

Enhanced FPBA provides both the robustness of FPBA and the accuracy of PBA.
Eigenmode Solver

- **Curved tetrahedral mesh** available (up to 3rd order)
- Improved performance and convergence for many examples

Model courtesy of Lancaster University, Dr. Graeme Burt

- Tetrahedral mesh: quick convergence, < 2 min to calculate 9 modes
Eigenmode Solver: Lorentz Force Detuning
Mechanics: Lorentz Force Detuning

Cavity is fixed here
Deformed Mesh (scaled)

Outlook

- Sensitivity analysis for eigenmode solver to evaluate from Lorentz force.
- Automation with System Assembly and Modeling (SAM) possible.
2D Magnetostatic Solver

- Rotational and translational symmetry is available.
- Can be selected in mesh dialog.
- Automatic mesh adaption.
PIC Solver: GPU Computing

Nvidia Tesla 20 cards are supported

Number of Mesh Cells | 1,000,188
Av. Particle Number | 7.74e5
Time CPU (Dual Xeon 5620) | 1h 14m 44s
Time GPU | 12m 25s
Total Speed Up* | 6.02
Time Domain Speed Up | 6.65

* Matrix calculation & post-processing are not running on GPU
PIC Solver: Secondary Electron Emission Models

New model: Vaughan

Advantages:
- Only a few parameters to configure

Disadvantage:
- Limited curve shapes
- Only true secondaries
- Not supported on the GPU, yet.
New model: Import

Advantages:
- Easiest definition
- Loading of measurement data possible
- GPU support

Disadvantage:
- Only true secondaries
Post Processing - Emittance

Emittance definition used:

$$\epsilon_{x,rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

Emittance often used by accelerator people:

$$\epsilon_{n,rms} = \beta \gamma \epsilon_{rms}$$
Any Questions?