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Abstract

The transverse impedance of kicker magnets is consid-
ered to be one of the main beam instability sources in the
projected SIS-100 at FAIR and also in the SPS at CERN.
The longitudinal impedance can contribute to the heat load,
which is especially a concern in the cold sections of SIS-
100 and LHC. In the high frequency range, commercially
available time domain codes like CST Particle Studio serve
to calculate the impedance but they are inapplicable at
medium and low frequencies which become more impor-
tant for larger size synchrotrons. We present the ongoing
work of developing a Finite Integration Technique (FIT)
solver in frequency domain which is based on the Parallel
and Extensible Toolkit for Scientific computing (PETSc)
framework in C++. Proper beam adapted boundary con-
ditions are important to validate the concept. The code is
applied to an inductive insert used to compensate the lon-
gitudinal space charge impedance in low energy machines.
Another application focuses on the impedance contribution
of a ferrite kicker with inductively coupled pulse forming
network (PFN).

INTRODUCTION

For the SIS100 synchrotron which will be built in the
framework of the FAIR project, especially the coasting
beam and the high intensity proton bunch are susceptible
to impedance driven coherent transverse instabilities.
Since SIS100 is a cryogenic (< 20 K) machine, the beam
induced heat load is an important issue. In the relevant fre-
quency range of several kHz to 2 GHz impedance sources
are mainly given by the thin stainless steel beam pipe [1]
and ferrite components. Above the cut-off frequency of
the beam pipe, wake fields are traveling off-phase with
the beam such that no net interaction takes place in long
bunches. Additionally to the necessary ferrite kickers and
their supply networks, also an inductive ferrite insertion
to compensate the negative inductive longitudinal space
charge impedance has been proposed. The longitudinal
and transverse impedances of these objects have to be
quantified in order to ensure a stable high intensity beam
by designing instability countermeasures.

Usually coupling impedances are defined as the Fourier
transform of the wake function. The wake function can
be calculated by commercial software such as CST Parti-
cle Studio [2]. At low frequencies, which become more
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important for large hadron synchrotrons, this technique
is inapplicable. From Küpfmüller’s uncertainty principle
ΔtΔf ≥ 1 with some definition of the time-duration and
bandwidth [3] one finds that 300 km of wake-length have
to be integrated in order to obtain a frequency-resolution
of 1 kHz. Therefore at low and medium frequencies a fre-
quency domain (FD) approach is pursued. The problem
of determining coupling impedances in the frequency do-
main has already been addressed by Doliwa et al. [4] us-
ing a Neumann series approach with a Python implementa-
tion. The new implementation described here is supposed
to carry on this work on a more general C++ platform with
properly defined interfaces to the PETSc [5] framework on
modern 64-bit machines.

The following will give a definition of the coupling
impedances directly in FD. By convention underlined sym-
bols emphasize complex variables. This also serves to dis-
tinguish between time domain (TD) and frequency domain
(FD) fields. The beam with total charge q in a synchrotron
is modeled as a disc with radius a of uniform surface charge
density σ traveling with velocity v. The transverse dis-
placement dx of the beam (i.e. a coherent dipole oscilla-
tion) is approximated to first order by

σ(�, ϕ) ≈ q

πa2
[Θ(a− �) + δ(a− �)dx cosϕ] (1)

=: σ‖Θ(a− �) + σ⊥δ(a− �) (2)

where Θ is the unit step and δ is its generalized derivative.
The beam’s volume charge density is given by �(�r, t) =
σ(�, ϕ)δ(z − vt) and it reads in frequency domain

�(�r, ω) =

∫ ∞

−∞
�(�r, t)e−iωtdt =

1

v
σ(�, ϕ)e−iωz/v . (3)

The beam current density in frequency domain is

Js,z(�, ϕ, z;ω) = σ(�, ϕ)e−iωz/v =: J‖ + J⊥ (4)

where J‖ and J⊥ are the monopole and dipole compo-
nents, as in Eq. (2), respectively. The coherent force due
to beam induced electromagnetic fields acting back on the
beam is described by the coupling impedance [6]

Z‖(ω) = − 1

q2

∫
beam

�E · �J ∗
‖ dV (5)

Z⊥,x(ω) = − v

(qdx)2ω

∫
beam

�E · �J ∗
⊥dV. (6)

The electric field �E is to be calculated from Maxwell’s
equations. Instead of the cosine distribution for dipolar ex-
citation in Eq. (2) one can also use a twin wire approxima-
tion, as described in [7].
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MAXWELL’S EQUATIONS AND FIT IN FD

A complete description of electromagnetic fields in FD
is given by Maxwell’s equations

∇× �E = �Jm − iω �B (7)

∇× �H = �Je + �J + iω �D (8)

∇ · �D = �
e

(9)

∇ · �B = �
m

(10)

and material equations

�D = ε(ω) �E, ε = ε′ − iε′′ (11)

�B = μ(ω) �H, μ = μ′ − iμ′′ (12)

�J = κ�E (13)

where �
e

and �Je denote the electric source charge and cur-

rent densities and �
m

and �Jm denote equivalent magnetic
source charge and current densities, respectively. Mag-
netic currents will be used to imprint externally calculated
boundary fields. The FIT discretization of Eqs. (7)-(13)
in the discrete C3np space (see e.g. [8]) are the so-called
Maxwell-grid-equations (MGE)

C�e =
��

j
m
− iω

��

b (14)

C̃
�

h =
��

j
e
+

��

j + iω
��

d (15)

S̃
��

d = q
e

(16)

S
��

b = q
m

(17)

with the diagonal material matrices containing the first to
second order numerical approximations (second order only
for homogeneous grid)

��

d = Mε
�e (18)

��

b = Mμ
�

h (19)
��

j = Mκ
�e. (20)

The grid incidence matrix C is real valued and consists of
the partial derivative incidence operators Px,Py,Pz . Note
that in contrast to Eqs. (7)-(10), the FIT equations do not re-
quire differentiability of the the continuousfields since they
are based on an integral formulation. Without the magnetic
charge and current, the curl-curl linear system is obtained

(
C̃Mμ−1C + iωMκ − ω2Mε

)
�e = −iω

��

j
e
. (21)

In the following, the system will be symmetrically rewrit-
ten with �e = M

−1/2
ε

�e ′as

(M−1/2
ε C̃Mμ−1CM−1/2

ε − iωM−1/2
ε Mκ − ω2I)�e′

= −iωM−1/2
ε

��

j
e
. (22)

Equation (22) will be abbreviated by

A�e′ = b. (23)

EXCITATION TERMS

The monopolar excitation current is given as a discretiza-
tion of (4) with constant σ as

��

j
mono

e,z
(iz) =

∫
�J · dÃz = qe−iωzi/v (24)

where iz is the z-index and zi is its z coordinate. The dipo-
lar excitation current is modeled by the twin wire dipole
approximation as

��

j
dip

e,z
(iz) =

��

j
mono

e,z
(x = −dx)−

��

j
mono

e,z
(x = +dx). (25)

The beam’s charge in the dual volumina is obtained using
the continuity equation

q
e
=

i

ω
S̃

��

j (26)

=
i

ω
(e−iω Δz

2v − e−iω−Δz
2v )σe−iωzi/v

=
2σ

ω
sin

(
ωΔz

2v

)
e−iωzi/v =

qΔz

v
e−iωzi/v +O(Δz3)

for a longitudinally equidistant grid. The integral in the
impedance definitions in Eqs. (5) and (6) is evaluated by
the functional

Z(�e(ω)) = �e · ��

j
∗

(27)

with normalized magnitude of the current (q = 1 As).

2D SIMULATIONS AND BOUNDARY
CONDITIONS

In general the electromagnetic field excited by moving
charges can be split into a source and a scattered part (see
e.g. [9]). Below the cut-off frequency of the connected
PEC beam pipe one finds only the source field (including
the space charge field) in the pipe since the scattered field
decreases exponentially. For longitudinally homogeneous
structures like the pipe stubs the Fourier correspondence
∂z → −iω/v holds [1]. Therefore, two possibilities for the
beam entrance and exit boundary conditions (BC) occur: A
periodic BC in which the beam entrance and exit plane are
mapped to each other or an infinite beam pipe BC in which
the source field is calculated separately and imprinted as
boundary condition on the right hand side of (23).

Phase Corrected Periodic BC

The phase of the field within the kicker vessel cannot
be known a priori since it depends on the scattered field.
Nonetheless, the total phase difference between the field
on the entrance and exit of the beam is a priori given by
the phase advance of the source field. Therefore one can
transform the field from the entrance to the exit with the
operator

Pz,exp = e−i
ω(L+Δzexit)

βc , (28)
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Figure 1: Sparsity pattern of Pz (top) and A matrix with pe-
riodic BC in z-direction and PEC-BC in x,y-direction (bot-
tom). The green lines denote the factor Pz,exp which serves
to close the curls on the z-boundary faces.

with L being the total length and Δzexit being the length
of the ghost edges at the exit. Drawbacks of these bound-
ary conditions are that an additional band is introduced in
the Pz-matrix (see Fig. 1 top), leading to many additional
bands in the curl-curl matrix (Fig. 1 bottom) and, more im-
portant, the main (large) curl-curl matrix is now complex.

Infinite Beam Pipe BC
For infinite beam pipe boundary conditions a supple-

mentary grid (x,y-plane) has to be created on which the
longitudinally harmonic fields are calculated and later im-
printed in the right hand side of Eq. (23). We will refer to
this as 2.5D solution since the longitudinal dependence is
known a priori, but nonzero.

In the discrete formulation the grid incidence matrix for
the longitudinal derivative is replaced by Pz = −1 +
exp(−iω�z/v) ≈ −iω�z/v. Note that P̃z = −PH

z =
1 − exp(+iω�z/v) ≈ −iω�z/v is identical to Pz for
small Δz. For the supplementary grid (SG) curl matrix one
has C̃ = CH . In the limit v → ∞ which corresponds to
∂z → 0 the purely two-dimensional ’radial model’ [1, 10]
is found. Note that this simplified two-dimensional calcula-
tion serves not only as a boundary condition but also to cal-

culate impedances of longitudinally homogeneous struc-
tures, as analytically done in e.g. [1, 7, 11].

The calculated 2D source fields are included in the main
simulation by using the Source-Equivalence-Theorem. In
practice this means that incomplete curls on the PEC-
boundary are completed using the source field. One obtains
(see also [9])

A�e′ =− iωM−1/2
ε

��

j
e

+ iωM−1/2
ε

��

j
eq

e
−M−1/2

ε C̃Mμ−1

��

j
eq

m
. (29)

with the equivalent source electric and magnetic current
densities given by

��

j
eq

e
= C̃R

�

h
SG

(30)

��

j
eq

m
= CR

�eSG (31)

where CR and C̃R are the residual curl operators (the inci-
dences missing in the main curl operator).

Space Charge Impedance as a Test-case

A verification of the implementation of the boundary
conditions is given by the correct reproduction of analyt-
ically known space-charge fields and impedances for in-
finitely long beam pipes. In particular, the correct de-
pendency on the velocity β = v/c and mass factor γ =
(1 − β2)−1/2 of the beam show that the electric and mag-
netic fields cancel in the ultrarelativistic case. A mimetic
correspondence from the FIT solution to the analytic cal-
culation for a most simplified case can be found in the Ap-
pendix. Below the cut-off frequency, the correct β−2γ−2

dependence is found for both periodic and infinite beam
pipe BC.

SOFTWARE
The CAD constructions and the mesh originate from

CST EMS2011 [2]. It is imported via Matlab [12] where
the material operators are disassembled in order to ob-
tain the staircase material vectors. This allows to rescale
the material parameters frequency dependently within the
main program. Mesh data, material vectors and topolog-
ical (PEC) information are transferred to the C++ main
program. The actual high performance computations are
carried out by the PETSc 3.2 [5] package which provides
a variety of matrix structures, preconditioners and solvers
for either real or complex linear systems. After compu-
tation, the fields can be visualized by transferring results
back to Matlab and CST EMS2011. See Fig. 2 for the de-
tails. Equation (23) is treated with different PETSc solvers
and preconditioners. So far, best results have been ob-
tained by a symmetric successive over-relaxation (SSOR)
preconditioner together with a stabilized bi-conjugate gra-
dient (BICGSTAB), generalized minimum residual (GM-
RES) or a conjugate residual (CR) solver. In future, the
application of algebraic multigrid (AMG) methods will be
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Figure 2: Implementation.

evaluated. For the supplementary grid, a direct solver (LU-
decomposition) is applied since this does not constitute a
bottleneck. For the main grid 3np = 106 has been reached
but the performance of the solver depends strongly on the
frequency (diagonal dominance is a sufficient convergence
condition for SOR). Note that the complex valued μ deteri-
orates the condition number of the A matrix. For frequen-
cies below the vessel cut-off ( only ≈ 12 MHz due to the
ferrite), the implementation of Doliwa’s Neumann series
approach [4] is considered.

APPLICATIONS

There is a variety of applications for this FD beam cou-
pling impedance solver, especially the ones with ferrite are
currently of interest. Ferrite materials provide high per-
meability (μ′) but also high magnetization and polarization
losses (μ′′ and ε′′).

Space Charge Compensation
The longitudinal space charge impedance (Eq. (40)) con-

stitutes a major fraction of the imaginary part of the longi-
tudinal impedance in SIS100. This leads to a RF-potential-
well distortion and to a net decrease of the RF-voltage (de-
crease of bucket height). Since Eq. (40) behaves like a neg-
ative inductance, one has come up with the idea to com-
pensate this with a lumped positive inductance, i.e. a cylin-
drical ferrite insertion. The ferrite has also the drawback
of adding a major contribution to the real part of the longi-
tudinal impedance. In the Los Alamos PSR one has found
the ’Microwave Instability’ occurring due to increased μ′′

from the material [13]. Another issue is real-value of the
transverse impedance added by the insert. With the pre-
sented simulation tool, the design and optimization of such
an inductive insert can be approached. Figure 3 show the
numerical calculation of a strongly simplified version of
the insert. A way to avoid the instability could be to shield
the insert from the beam at particular frequencies. Such
shielding metal fingers are already in use in the LHC MKE-
kickers [14].

Kicker with PFN
A major transverse impedance contribution in the

SIS100 ring are the numerous ferrite kickers [15]. Besides

Figure 3: Simplified model of the insert with μ′
r =

1000, μ′′
r = 0 (top) and electric field at f = 100 MHz

with periodic boundary (bottom). The impedance is purely
inductive.

the ferrite itself, also the supply network (pulse forming
network, PFN) contributes to the impedance at lower fre-
quencies. In the simulation the PFN can be included as a
lumped admittance by adding its value to the correspon-
dent entry in the Mκ-matrix. The two frequency regimes
in which the ferrite and the PFN dominate the transverse
impedance are explained in [16]. There are means to shield
the ferrite contribution [14] but the PFN impedance peaks
are located partly within the kicker pulse spectrum, which
cannot be shielded without interfering with the kicker’s
function (reciprocity).

CURRENT STATUS AND OUTLOOK

The fundamental part of the implementation of the code
is done, the frequency range between 10 kHz and 100 MHz
can be simulated with up to a few hundred thousand cells
and either periodic or infinite beam pipe boundary con-
ditions. In the near future, a divergence correction [17]
using Eq. 26 will be implemented. At lower frequencies
Doliwa’s Neumann series approach [4] or an entirely two-
dimensional simulation [1] are options. The presented soft-
ware project aims for a complete database for the SIS100
longitudinal and transverse impedance below the beam
pipe cut-off frequency. For the confirmation of the obtained
results, bench measurements are outlined.
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Figure 4: Simplest model mesh.

APPENDIX: SIMPLEST CASE FOR 2D
CALCULATION

Applying the MGE (14)-(17) to the simplest structure in
Fig. 4 one finds the following equations:

−i
ω

v
Δz�e� − �ez = −iω

��

bϕ (32)

4
�

hϕ − iω
��

dz =
��

j
e,z

= q (33)

−i
ω

v
Δz̃

��

dz + 4
��

d� = qe =
qΔz̃

v
(34)

��

bz = 0. (35)

These three equations for the three unknowns �ez,
�e� and

��

bϕ can be solved using the material operators (18) and
(19),

4�ez + ω2Mϕ
μM

z
ε(I−

ΔzΔz̃

v2
Mϕ

μ−1M
�
ε−1)

�ez

= iωMϕ
μ(I−

ΔzΔz̃

v2
Mϕ

μ−1M
�
ε−1)q

(36)

where one obtains

(I− ΔzΔz̃

v2
Mϕ

μ−1M
�
ε−1) = − 1

β2γ2
I (37)

independent of the mesh lengths. One finally finds

�ez =
−iω

4β2γ2 − ω2δ2⊥/c2
Mϕ

μq. (38)

where δ⊥ = Δx = Δx̃ = Δy = Δỹ denotes the trans-
verse edges. Equation (36) is the mimetic correspondence
to the continuous relativistic 2.5D Helmholtz equation [1]

(
�⊥ − ω2

β2γ2c2

)
Ez = − iωμσ

β2γ2
e−iωz/v (39)

where the factor 4 in Eq. (36) originates from the differ-
ence stencil of the transverse Laplacian. From Eq. (39)
one obtains after solving by a product separation ansatz
and some simplifications [11] the longitudinal space charge
impedance

ZSC
‖ = −iω

μ0gl

4πβ2γ2
. (40)

below cut-off. This behaviour (∝ β−2γ−2, ∝ ω, negative
imaginary) has to be reproduced by the numerical solution,
in particular by Eq. (38). Additionally,ZSC

‖ → 0 must hold
for ω → ∞. Note that the geometry factor g can only be
poorly reproduced by staircase FIT for curved structures.
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