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Abstract
The new X-ray Free Electron Laser (SwissFEL) at the

Paul Scherrer Institute (PSI) employs, among many other
radio frequency elements, a transverse deflecting cavity for
beam diagnostics. Since the fabrication process is expen-
sive, an accurate 3-D eigenmodal analysis is indispensable.
The software package Femaxx has been developed for solv-
ing large scale eigenvalue problems on distributed mem-
ory parallel computers. Usually, it is sufficient to assume
that the tangential electric field vanishes on the cavity wall
(PEC boundary conditions). Of course, in reality, the cavity
wall is conductive such that the tangential electrical field on
the wall is nonzero. In order to more realistically model the
electric field we impose surface impedance boundary con-
ditions (SIBC) arising from the skin effect model. The re-
sulting nonlinear eigenvalue problem is solved with a non-
linear Jacobi–Davidson method. We demonstrate the per-
formance of the method. First, we investigate the funda-
mental mode of a pillbox cavity. We study resonance, skin
depth and quality factor as a function of the cavity wall
conductivity. Second, we analyze the transverse deflect-
ing cavity of the SwissFEL to assess the capability of the
method for technologically relevant problems.

FORMULATION OF THE PROBLEM
We wish to calculate the resonant frequencies and the

corresponding field distribution in a dielectric electromag-
netic cavity. The cavity wall Γ is assumed to be of arbitrary
shape; there is no aperture or hole in Γ. The surface con-
ductivity σs of Γ is large but finite. The interior Ω of the
cavity is assumed to be source-free, and is characterized by
(µ0µr, ε0εr). µ0 and ε0 are the magnetic permeability and
electric permittivity in free space. µr and εr are relative
magnetic permeability and relative electric permittivity, re-
spectively. At microwave frequencies, µr and εr can be
assumed to be non-dispersive.

In the time-harmonic regime, after eliminating the elec-
tric field E(x), the magnetic field H(x) satisfies

∇× (ε−1
r ∇×H(x))− k2

0 µr H(x) = 0, x ∈ Ω,

∇ · (µrH(x)) = 0, x ∈ Ω.
(1)

Here, k0 = ω̃
√
µ0ε0 is the complex wave number in free

space, ω̃ = ω + iα is the complex angular frequency with
ω the angular frequency and α the exponential decay rate.
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We use the surface impedance boundary condition (SIBC)
on Γ [1]

n× (n×E(x)) = Zs n×H(x), x ∈ Γ. (2)

Here, Zs is the complex surface impedance and n the sur-
face normal vector pointing outwards.

We employ Zs based on the theoretical skin effect
model [2]

Zs =
1 + i

σsδ
, (3)

where σs is the surface conductivity, and δ is the skin depth.
The real part of Zs is the surface resistivity, i.e.,

Rs = Re(Zs) =
1

σsδ
. (4)

The skin depth δ is [2]

δ =

√
2

ωµ0µrσs
. (5)

δ depends on the angular frequency ω. Note that the skin
effect model is appropriate only if σs is large enough such
that (according to [2]): (1) the conduction current is given
by Ohm’s law and the net charge density is zero; (2) the
displacement current is negligible in comparison with the
current, i.e., ωεrε0 � σs. With the above two assump-
tions, we consider the conductor is good, and the loss of
the cavity is small. In other words, the decay rate α � ω,
and thus ω ≈ ω̃ = k0c, implying that

δ ≈
√

2

k0cµ0µrσs
. (6)

The finite element method (FEM) is a suitable method
for arbitrary geometrical scales. In order to apply the FEM
we use the weak form of Eq (1), see [3],

Find k0 ∈ C and H ∈ V , H 6= 0, such that for all

f ∈ V and all q ∈W∫
Ω

[
1

εr
∇×H · ∇ × f − k2

0µrH · f
]
dx

+ ik0
1

Z0

∫
Γ

(n×E) · fds = 0, (7)∫
Ω

µrH · ∇q dx = 0.

Here, V denotes the functions in H(curl; Ω) that satisfy
the SIBC boundary conditions and W = H1

0 (Ω) [1]. Z0 =√
µ0/ε0 is the characteristic impedance of free space.
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Plugging in the SIBC (2), and using (3) and (6), we get

ik0
1

Z0

∫
Γ

(n×E) · f ds

= ik0
Zs
Z0

∫
Γ

(n×H) · (n× f) ds

= (i− 1)k
3
2
0

√
cµ0µr

2σsZ0
2

∫
Γ

(n×H) · (n× f) ds.

With this, the weak form (7) becomes

Find k0 ∈ C and H ∈ V , H 6= 0, such that for all

f ∈ V and all q ∈W∫
Ω

[
1

εr
∇×H · ∇ × f − k2

0µrH · f
]
dx (8)

+ (i−1)k
3
2
0

√
cµ0µr

2σsZ0
2

∫
Γ

(n×H) · (n× f) ds = 0,∫
Ω

µrH · ∇q dx = 0.

We discretize problem (8) with the finite element Ritz-
Galerkin method [1] employing appropriate finite element
subspaces of V and W . To that end we triangulate Ω by
tetrahedra. The magnetic vector functions in V are then
approximated by Nédélec edge elements, while the scalar
functions in W are approximated by Lagrange nodal finite
elements [1]. This approach avoids the generation of spuri-
ous eigensolutions, and imposing the boundary conditions
is straightforward [1].

Let the vector functions Ni, 1 ≤ i ≤ n, be the Nédélec
basis functions, while the scalar functions N`, 1 ≤ ` ≤ m,
denote the Lagrange basis functions. Eventually, we obtain
a constrained complex nonlinear eigenvalue problem

T (λ)x = Ax + λ
3
2Rx− λ2Mx = 0, (9a)

CTx = 0. (9b)

Here λ(= k0) is the eigenvalue and x is the eigenvector.
The matrices A, R, M , and C in (9) have the entries

aij =

∫
Ω

ε−1
r (∇×Ni) · (∇×Nj) dx,

mij =

∫
Ω

µrNi ·Nj dx,

rij = (i− 1)

∫
Γ

√
cµ0µr

2σsZ0
2 (n×Ni) · (n×Nj) dx

ci` =

∫
Ω

µrNi(x) · ∇N`(x) dx,

1 ≤ i, j ≤ n, 1 ≤ ` ≤ m.

We solve the nonlinear eigenproblem (9a) with the non-
linear Jacobi–Davidson (NLJD) method. The algorithm is
taken from Betcke and Voss [4,5]. To impose the divergen-
ce-free condition (9b), we construct an appropriate projec-
tor to assert that each vector in the NLJD search space is in
the null space of CT , see [6, 7].

After having solved (9) the angular frequency ω and the
decay rate α are derived from λ. The magnetic field H is
obtained from the calculated eigenvector, the electric field
E by differentiation.

The system’s total stored energy U in Ω, and the average
power loss Ps in the surface conductor Γ, are computed
as [2]

U =
µ0µr

2

∫
Ω

|H|2 dx,

Ps =
Rs
2

∫
Γ

|Ht|2 dx.
(10)

Here, Ht is the tangential component of the magnetic field
on Γ [2]. The systems quality factor can then be defined by

Q =
ωU

Ps
. (11)

NUMERICAL EXPERIMENTS
All simulations have been performed on the Cray XT6 at

the Swiss National Supercomputing Centre (CSCS) [8].

Pillbox Cavity
Before simulating the transverse deflecting cavity, we

validated the correctness and reliability of our method by
means of the elementary pillbox cavity. Let radius and
length of the pillbox be r = 0.05 m and h = 0.1 m, respec-
tively. The mesh contains 306’337 tetrahedra. By using
quadratic Nédélec elements, the finite element discretiza-
tion counts 1’986’080 degrees of freedom (dof). We com-
pute the fundamental TM010 mode with varying surface
conductivity σs. σs is large enough that the two assump-
tions for a good conductor are satisfied. The results we
obtained are listed in Table 1.

Table 1: Numerical analysis for TM010 mode of the pill-
box cavity. f = ω

2π is the resonance frequency; δ is the
skin depth (5); Q is the quality factor (11).

σs (S/m) f (GHz) δ (mm) Q
102 2.238100 1.1 30
103 2.277208 0.33 99
104 2.289538 0.11 316
105 2.293434 0.033 1001

5.8 · 107 2.295160 0.0014 24160
1010 2.295229 0.00011 317255

If σs decreases, the field can penetrate into the surface
conductor with larger skin depth δ. We understand an in-
creasing δ is equivalent to increasing the volume of the cav-
ity Ω. Therefore, the resonant wavelength increases and the
frequency f decreases. Our numerical results clearly show
this trend in δ and f .

We also calculated the case of perfect electric con-
ductor (PEC) boundary conditions. Then, σs = ∞
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and n · E = 0 on Γ. The computed resonance is
fpec = 2.295234 GHz [9]. fpec is slightly larger than
2.295229 GHz, where σs = 1010 S/m. We observe that
if σs is 5.8 · 107 S/m (the conductivity of copper), a fur-
ther increase of σs generates almost negligible shift in f ,
i.e., less than 1 MHz. Therefore, copper is a material well
suited for the cavity wall.

The quality factor decreases significantly as σs de-
creases. If σs reduces by a factor of 100, then δs, Rs and
thus Ps increase by a factor of about 10. Therefore, the
quality factor reduces by approximately a factor 10.

Transverse Deflecting Cavity
We simulated the 5-cells transverse deflecting cavity.

Each cell is a pillbox, and the middle cell is coupled to a
rectangular feeding waveguide, see Fig. 1(a). The detailed
geometrical parameters of this cavity are given in [10].

We computed the operating TM110 mode with the sur-
face of the conductor being copper, i.e., σs = 5.8 ·107 S/m.
In order to maintain accuracy, we use a mesh containing
872’261 tetrahedra, see Fig. 1(a). By employing quadratic
Nédélec elements, the finite element discretization counts
5’726’536 degrees of freedom. 512 cores are used on the
Cray XT6.

We obtained the frequency f = 2.995488 GHz and the
quality factor Q = 15504. They match well with the
design parameters [10]. The skin depth is δ ≈ 1.2µm,
much smaller than the radius of the cells (58.28 mm). If
we replace the SIBC with PEC boundary conditions, the
resonance increases slightly from f = 2.995488 GHz to
fpec = 2.995930 GHz. The electrical field distribution |E|
is plotted in Fig. 1(b).
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