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Abstract

The dependence of the resonant frequency of an RF cav-

ity on its geometry is represented by a stochastic response

surface model, which is constructed on the basis of a few

eigenmode solutions extended with sensitivity information.

The response surface model is used for statistic analysis

and for calculating the effect of Lorentz detuning.

INTRODUCTION

High energy cavities are used within a very small fre-

quency range. Any mechanical deformation, albeit small,

may lead to an unacceptable shift of the frequency of the

applied eigenmode [1]. To achieve a design that is robust

against microphoning and Lorentz detuning [2–5], the sim-

ulation tool should deal with small changes in geometry in

a consistent way and should be able to calculate the reso-

nance frequencies with a relative accuracy of 10−5. The

simple and straightforward procedure which changes and

remeshes the geometry and repeats the eigenmode solving,

turns out to be inefficient because the introduced discretisa-

tion errors will mask the small changes in eigenfrequency,

unless an prohibitively fine mesh is used [6]. This paper

introduces two techniques to overcome this problem: (a)

the eigenmode solver also delivers the sensitivities of the

eigenfrequency and thereby increases the amount of in-

formation obtained for a single set of geometric parame-

ters; (b) the eigenfrequency is modelled by a stochastic re-

sponse surface method which allows reliable interpolation

and uses the concept of uncertainty to deal with errors in-

troduced by remeshing.

CAVITY EIGENMODE SOLVERS

The eigenmodes of the cavity are calculated by solving

one of

∇×

(

1

µ
∇× ~E

)

= ω2ε ~E (1)

∇×

(

1

ε
∇× ~H

)

= ω2µ ~H (2)

with ~E and ~H the electric and magnetic field strengths, ω
the angular frequency, ε the permittivity and µ the perme-

ability [7, 8]. Only the eigenmodes with the lowest eigen-

frequencies are relevant. When discretised by the finite-

element (FE) method or the finite-integration technique
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(FIT), (1) and (2) become

K 1

µ

⌢
e = ω2

Mε
⌢
e (3)

K 1

ε

⌢

h = ω2
Mµ

⌢

h (4)

and will further be expressed generically by Kαu =
ω2

Mβu where (α, β,u) either stands for ( 1
µ
, ε, ⌢

e) or

( 1
ε
, µ,

⌢

h) and ⌢
ej and

⌢

hj are the degrees of freedom for the

electric and magnetic field strengths respectively. The ma-

trix coefficients are

Kα,i,j =

∫

V

α (∇× ~wi) · (∇× ~wj) dV (5)

Mβ,i,j =

∫

V

β ~wi · ~wj dV (6)

with ~wi(x, y, z) FE or FIT shape functions and V the com-

putational domain.

In many situations, the cavity has a cylindrical symmetry

and only modes with ~E = (Er, 0, Ez) and ~H = (0, Hθ, 0)
are relevant. Then, a substantial saving of computation cost

is achieved by only triangulating the rz-cross-section of the

cavity and discretising (2) by the shape functions

~wj =
Nj(r, z)

2πr
~eθ (7)

N
(k)
j (r, z) =

a
(k)
j + b

(k)
j r2 + c

(k)
j z

2S(k)
(8)

where ~eθ is the peripheral unit vector, Nj(r, z) are nodal

shape functions associated with mesh node j and (8) ex-

presses Nj(r, z) in element k as a function of the coeffi-

cients a
(k)
j , b

(k)
j and c

(k)
j . Nj(r, z)(k) is features a quadratic

dependence on r such that a homogeneous electric field can

be represented exactly on the mesh [9].

SENSITIVITIES OF THE RESONANCE

FREQUENCY

As will become clear below, highly accurate sensitivi-

ties of the cavity eigenmode with respect to geometric pa-

rameters are of paramount importance for studying micro-

phoning and Lorentz detuning and for a stochastic analy-

sis or optimisation of the design. The sensitivities of the

eigenfrequency ωp of eigenmode (ωp,up) with respect to

the geometric parameters ζq are obtained directly from the

eigenvalue solver by [10–12]

dωp

dζq

=
1

2ωp

u
H
p

(

dKα

dζq

− ω2
p

dMβ

dζq

)

up

uH
p Mβup

(9)
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Figure 1: Convergence of the absolute discretisation er-

ror for the sensitivities of the first two eigenfrequencies

(f1, f2) of a pill-box resonator with respect to changes in

the radius R and length L of a pill-box resonator.

The calculation of dKα

dζq

and
dKβ

dζq

involves the derivatives

dwj

ζq
of the shape functions with respect to the geometric

parameters [13]. The convergence of the discretisation er-

ror for the sensitivity calculated by (9) is of the same order

as the one for the eigenvalues themselves. An exemplary

validation for a 2D eigenmode solver based on (7) and ap-

plied to a pill-box resonator is shown in Fig. 1.

STOCHASTIC RESPONSE SURFACE

METHOD

The study of microphoning or Lorentz detuning of a res-

onating cavity and the optimisation of the design require

a large number of eigenmode solutions. A direct calcula-

tion may become too time consuming. Instead, we solve

the eigenmodes for a restricted number of geometries, use

these to construct a surrogate model, which is then ex-

ploited for calculating the properties for slightly modified

geometries. Moreover, we prefer a stochastic response sur-

face method (RSM) instead of a standard RSM, in order to

account for both model uncertainties and simulation inac-

curacies [14, 15]. The uncertain geometric parameters are

based on Gaussian variables and the eigenfrequencies are

approximated by a series expansion of multi-dimensional

Hermite polynomials. Their coefficients are determined by

regression.

As a rule of thumb, the data of 2N eigenmode solutions

are sufficient to obtain a robust estimate of N coefficients.

The sensitivities of the resonant frequency with respect to

M input parameters can be exploited to diminish the num-

ber of required collocation points to 2N/(M + 1). This

is particularly beneficial because the additional calculation

of M sensitivities is substantially less time consuming than

the eigenmode calculation for a single geometry.

The insertion of the stochastic RSM between the field

solver and an outer calculation procedure is illustrated for

a stochastic analysis of a cylindrical cavity with radius

R = 30 mm and length L = 100 mm. The standard devi-
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Figure 2: Convergence of the approximation error for the

mean value µ and the standard deviation σ with respect to

the order of the polynomial chaos expansion.

ations are σR = 1.5 mm and σL = 5 mm respectively. A

reference solution for the eigenfrequency f = 3.849 GHz

and its standard deviation σf = 194.1 MHz is obtained by

1000 2D FE eigenmode solves. The stochastic RSM pre-

serves the high accuracy of the FE solver. The relative nu-

merical error falls below 10−5 for a polynomial chaos ex-

pansion of fifth order (Fig. 2). A stochastic RSM of fifth or-

der accuracy set up with 42 FE eigenmode solves achieves

the same accuracy as the reference solution. When, ad-

ditionally, the FE solver provides the sensitivities of the

eigenfrequency to R and L, a stochastic RSM for only us-

ing 14 sets of geometric parameters is sufficient.

The stochastic RSM allows to organise an analysis with

changing geometric parameters as long as their range is

covered by the RSM. This is commonly the case for statis-

tical analyses and for studying microphoning and Lorentz

detuning.

EXAMPLE: LORENTZ DETUNING

The accelerating eigenmode of the TESLA cavity [16] is

computed for a single cell by a 2D eigenmode solver based

on (2) discretised by the shape functions (7) and (8). The

Lorentz force density or radiation pressure acting on the

inner cavity wall is

fLor =
1

2
µ





∑

j

⌢

hj

Nj(r, z)

2πr





2

(10)

The mechanical deformation is calculated by a 1D axisym-

metric shell solver on the boundary of the 2D mesh, yield-

ing the radial displacements w(z), axial displacements

u(z) and bending angles of the mesh nodes (Fig. 3) [17,18].

Assuming elastic behaviour, the deformation changes lin-

ear with the radiation pressure. However, the radiation

pressure is quadratically dependent on the magnitude of

the electric field. Also the dependence of the eigenfre-

quency on the magnitude of the deformation is nonlin-

ear. It is assumed that the pattern of the deformation is
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Figure 3: Displacement wall TESLA cavity due to radia-

tion pressure with exaggeration factor 100.

only marginally influenced by the loading such that the de-

formed cavity wall can be parametrised by

{

R(z) ← R(z) + αw(z)
z ← z + αu(z)

(11)

where (R(z), z) is the design geometry, (w(z), u(z)) is the

deformation pattern and α represents the size of the de-

formation. α is sized such that α = 1 corresponds to the

deformation when an energy of 1 J is stored in a single cell.

The sensitivity of the eigenfrequency to the deformation

pattern is determined without changing the topology of the

FE mesh. For numerical reasons, the deformation is spread

out over all mesh nodes.
{

rj ← rj + αu(zj)
rj

R(zj)

zj ← zj + αw(zj)
rj

R(zj)

(12)

The dependence of the FE shape functions on α causes

d~wj

dα
6= 0 and hence

dK 1

ε

dα
6= 0 and

dKµ

dα
6= 0. The

sensitivity of the eigenfrequency on the magnitude of the

deformation is calculated from (9) and found to be df

dα
=

75.615 Hz.

CONCLUSIONS

Significant shifts of the eigenfrequency of a cavity be-

cause of small geometric deformations are adequately cal-

culated by an eigenmode solve delivering sensitivity infor-

mation combined with a stochastic response surface model.

REFERENCES

[1] P. Pierini, D. Barni, A. Bosotti, G. Ciovati, and C. Pa-

gani, “Cavity design tools and applications to the TRASCO

project,” in Proceedings of the 1999 Workshop on RF Super-

conductivity, Santa Fe, New Mexico, USA, 1999, pp. 380–

383.

[2] Z. Conway, J. Fuerst, M. Kelly, K. Shepard, G. Davis, and

J. Delayen, “Electro-mechanical properties of spoke-loaded

superconducting cavities,” in SRF 2007, Beijing, China,

2007.

[3] H. Gassot, “Mechanical stability of the RF superconductive

cavities,” in EPAC, Paris, France, 2002, pp. 2235–2237.
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