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Abstract

Electromagnetic simulations are fundamental for accel-

erator modeling. In this paper two high-order numeri-

cal methods will be studied. These include continuous

Galerkin (CG) method with vector bases, and discontinu-

ous Galerkin (DG) method with nodal bases. Both methods

apply domain decomposition method for the paralleliza-

tion. Due to the difference in the numerical methods, these

methods have different performance in speed and accuracy.

DG method on unstructured grid has the advantages of easy

parallelization, good scalability, and strong capability to

handle complex geometries. Benchmarks of these methods

will be shown on simple geometries in detail first. Then

they will be applied for simulation in accelerator devices,

and the results will be compared and discussed.

INTRODUCTION

Time dependent electromagnetic simulations are bases

for many accelerator simulations. It is an important area

in computational electromagnetics. Many numerical meth-

ods have been developed till now, such as finite differ-

ence (FDM), finite volume (FVM) and finite element meth-

ods (FEM). FEM has the advantage of handling complex

geometries, therefore many efforts have been made with

FEM. For FEM methods, there are two types of methods

have been proved successful, they are CG with vector base

and DG with Nodal base. In this paper we will study the

performance of these two methods.

The paper is organized in the following way: the nu-

merical method is explained and algorithms are compared

in section 2, validation is shown in section 3, then bench-

marks results are shown in section 4, and a comparison on

wakefield simulations is given in section 5. At last, the

conclusion is drawn in section 6.

NUMERICAL METHOD

Maxwell’s Equation

In 3D domain Ω, time dependent Maxwell’s equations

can be written as:

∂B

∂t
= −∇×E,

∂D

∂t
= ∇×H+ J (1)

∇ ·D = ρ, ∇ ·B = 0, x ∈ Ω, (2)

n̂×E = 0, n̂ ·H = 0 x ∈ ∂Ω, (3)
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where, the electric field E, electric flux density D, as well

as the magnetic field H and the magnetic flux density B
are related through the constitutive relations D = εE,B =
μH.

CG Formulation

Maxwell’s Equation (1) can be written in following in-

homogeneous wave equation

∇× 1

μr
∇×E+

εr
c20

∂2E

∂t2
= −μ0

∂J

∂t
(4)

which times edge bases and apply electric (PEC) bound-

ary condition to arrive at

M
1

c20

d2e

dt2
+ Se = −�f (5)

where M and S are mass and stiffness matrices in the

following

Mij =

∫
Ω

εr �Wi · �WjdΩ (6)

Sij =

∫
Ω

1

μr
∇× �Wi · ∇ × �WjdΩ (7)

fi =

∫
Ω

μ0
�Wi · ∂

�J

∂t
dΩ (8)

Based on the Newmark-Beta formulation [1, 2], Equa-

tion (5) can be solved to obtain en+1 with

en+1 = (M + β(c0δt)
2S)−1 ·

{(2M − (1− 2β)(c0δt)
2S)en (9)

−(M + β(c0δt)
2S)en−1

(c0δt)
2(βfn+1 + (1− 2β)fn + βfn−1)}

More detailed information can be found in [1, 2, 3]. The

CG method is based on Nédélec edge bases, which is ex-

plained in detail in [4], and we omit it due to the constraint

of page limit.

DG Formulation

The discrete form of DG is:

dEN

dt
= M−1S×HN + SE
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+ M−1F(n̂× Z+[HN]− n̂× [EN]

Z+ + Z−
)

∣∣∣∣∣
∂D

(10)

dHN

dt
= M−1S×EN + SH

+ M−1F(n̂× n̂× [HN] +Y+[EN]

Z+ + Z−
)

∣∣∣∣∣
∂D

(11)

where n̂ is the normal vector on boundary, φ is the test

function in Ω. [EN] = E+
N − E−N and [HN] = H+

N −
H−N for the solutions E−N and H−N in the local domain and

E+
N and H+

N in neighboring elements. M, S are mass and

stifness matrixes respectively.

More details on DG method and nodal base Finite Ele-

ment method can be found in [5, 6, 7, 8, 9], which also be

skipped due to the page limit.

We adopt low-storage five-stage fourth-order explicit

Runge-Kutta (LSERK) scheme has been used [5].

Methods Comparison
• As the order of the vector base is the order of nodal

base minus 2, they have different accuracy for the in-

terpolation, derivative and curl operators.

• Total degree of freedom when using CG with vector

base is much less than the total degree of freedom

when using DG nodal base.

• Both algorithms solve the Maxwell’s equation in time

domain, but since the CG method use nodal base, it

has no extra cost for transforming the fields to the

spectral space.

• CG method needs to inverse global matrixes, while

DG method only needs to inverse local matrixes. This

makes the DG method to have better scalability and

faster speed.

• DG method need to exchange face information for

each element, this usually needs more memory and

the communication is more than CG method.

• DG method uses 4th order Runge-Kutta integration

scheme, while CG method uses 2nd order time inte-

gration scheme.

VALIDATION

Analytical Solution
In order to further verify our results in 2D case, we con-

duct similar tests in 3D. The analytic solution with periodic

boundary condition in [−π, π]3 are:

Ex = 0.0

Ey = cos(x) · sin(y) · sin(z) · cos(
√
3t)

Ez = cos(x) · cos(y) · cos(z) · cos(
√
3t)

Hx = 2.0 · cos(x) · sin(y) · cos(z) · sin(
√
3t)/

√
3

Hy = − sin(x) · cos(y) · cos(z) · sin(
√
3t)/

√
3

Hz = sin(x) · sin(y) · sin(z) · sin(
√
3t)/

√
3

Table 1: Comparison of DOFs (E=203)

Polynomial Order 3 4 5

CG vector base 165 1038 3231

DG nodal base 4902 10184 18310

(12)

The errors verses time have been plotted in Fig. 1. As

can be seen that the errors with both method decrease as

polynomial order increases. Since the order of the vector

base (PM) equals the order of nodal base (P) minus 2, for

the same P, the error of vector base is larger than the nodal

base. Another difference is the errors for the DG method

oscillate around a constant level, while the errors for the

CG method increase linearly.
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Figure 1: Errors versus polynomial orders: Nodal base

(left); vector base (right)

BENCHMARKS
In order to compare performance in detail, we study

them in following different perspectives.

Degree of Freedom
First we compare degrees of freedom in Table 1, as can

be seen that DOF of vector is much less than the DOF of

nodal base. This makes the size of global mass and stiff-

ness matrices smaller when using vector base than using

nodal base. This usually leads to better condition number

for the matrix and can achieve fast speed. As DG method

been used instead of CG, inverse of global matrix has been

avoided which eliminate this shortcoming.

Iteration Convergence Speed
In order to see the differences of speed with different

vector base orders, the comparison has been given in Ta-

ble 2. From the table, the increase of time is nonlinear.

This make it difficult to use for higher order vector base.

Speed Comparison
Next, we compare their speeds with 6000 tetrahedra and

running for T=1. Currently CG solver has not been fully

optimized. Table 3 shows that for P=2 (PM=0), CG with
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Table 2: Iteration Steps for Inverse Operation with Vector

Base (E=6000)

Nodal Base Order (P) 2 3 4

Vector Base Order (PM=P-2) 2 3 4

Iteration steps 36 111 276

Table 3: Comparison of Speeds (E=6000)

Nodal Base Order 2 3 4 5

DG Nodal Base 6.35 14.1 24.3 46.1

Vector Base Order 0 1 2 3

CG Vector Base 2.14 32.86 333.95 2561.78

vector is faster. When P larger than 2, DG with nodal base

is faster. As the inverse takes more and more time, the

speed for CG with vector base increase nonlinearly and this

is a big challenge for using CG method.

Comparison of Wakefield Simulations
We have used these two solvers for a wakefield simu-

lation. A Gaussan beam has been simulated in the de-

vice shown in Fig. 3 . The longitudinal wake potential

has been calculated at r=1 for different beam bunch sizes,

σz = 0.25, 0.5, 0.75, 1.0 and σr = 0.1. A 2D poisson

equation has been solved to get the initial electric field and

current has been activated to simulate the charged beam.

Left plot in Fig. 2 shows the wakepotential comparison.

Solid line is the result using DG nodal base, and dash line

is the result for CG vector base. They are consistent, this

means both solvers produce correct results and they both

can be used for the wake field simulations. The right one

shows the beam distribution function for different σz =
0.25, 0.5, 0.75, 1.0.
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Figure 2: Comparison of wakepotential(left: Nodal

base-solid, vector base-dash); beam distribution for

(σz=0.25,0.5,0.75,1.0)

Figure 3 shows the electric field contours from the simu-

lation. Totally 561883 tetrahedra elements have been used,

and P=2.

CONCLUSION
In this paper, we have compared performance of two

types time dependant EM solvers. They both can be used

Figure 3: Contour of electric field

for accelerator simulations. Comparisons have been per-

formed in terms of DOFs, iteration steps, accuracy, and

speed. At last, results for a wakefield simulation has been

compared. CG method with vector base has smaller DOFs

than CG with nodal base, but due to the nature of solving

global matrix, CG method with vector base has the chal-

lenge when DOF becomes large. On the other side, the

memory cost of DG is much larger than CG method, which

is a challenge for DG method.
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