
RAPID INTEGRATION OVER HISTORY
IN SELF-CONSISTENT 2D CSR MODELING∗

Klaus Heinemann, David Bizzozero, James A. Ellison, Stephen R. Lau
Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA

Gabriele Bassi, Brookhaven National Laboratory, Upton, NY, USA

VLASOV-MAXWELL APPROACH TO
BUNCH COMPRESSORS

This paper discusses three strategies in our work on the
Vlasov-Maxwell (VM) system for a bunch compressor:
the current paradigm, a modified paradigm, and a future
paradigm. Each strategy only requires knowledge of the
fields in the bunch. In the current paradigm we reduce
the field calculation to a 2D integral over the 2D charge
and current densities of the bunch and their time history.
The current paradigm is implemented in our code VM3@A
(Vlasov-Maxwell Monte-Carlo Method at Albuquerque)
using a time stepping algorithm. Here a major expense is
in the integration over history at each time step. The mod-
ified paradigm relies on spatial Fourier transformations to
reduce the 2D integral to 1D convolutions (one convolution
per mode) over history, where we approximate the convolu-
tion kernel by a sum of exponentials. As a result the history
dependence is effectively localized in time, and each time
step then relies only on field information at the present and
previous time steps. We present a toy model for the modi-
fied paradigm and results are encouraging. We then briefly
discuss a future paradigm which involves a 3D Maxwell
simulation, using a domain D which snuggly surrounds the
bunch. Such a simulation will require radiation boundary
conditions set on ∂D.

The exact problem we deal with in all three strategies is
the IVP for the coupled system consisting of the 6D Vlasov
equation for the phase space density f and the Maxwell
equations for the self field E,B with boundary conditions
on two perfectly conducting shielding plates. The initial
self field is zero for the current paradigm and its modifica-
tion. Details of the VM approach and the current paradigm
are found in [1, 2, 3].

Figure 1: Geometry of sheet bunch model
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CURRENT PARADIGM

The current paradigm and its modification are based on
a special case of the VM system, the sheet bunch model,
where the bunch is confined to the mid-plane between the
two shielding plates; whence

f(R, Y,P, PY ;u) = δ(Y )δ(PY )fsheet(R,P;u)

ρf (R, Y ;u) = δ(Y )ρsheet(R;u)

jf (R, Y ;u) = δ(Y )jsheet(R;u) ,

where u = ct, R = (Z,X),P = (PZ , PX), and ρf , jf
are the charge and current densities associated with f . Our
setup is shown in Fig. 1.

For the sheet bunch model E,B are only needed in the
part of the Y = 0 plane occupied by the bunch. Moreover,
EY , BX , BZ vanish in the Y = 0 plane, and so we only
need EZ , EX , BY . We define

F(R;u) := (EZ(R, 0;u), EX(R, 0;u), BY (R, 0;u)) ,

and the exact solution in the Y = 0 plane is

F = F0 +

∞∑
m=1

Fm , where (1)

F0(R;u) =
−1

4π

∫ u

0

∫ π

−π

dvdθS(R + e(θ)(u − v), v) (2)

is the nonshielding term and the Fm are image charge con-
tributions needed to satisfy the boundary conditions. Here,
e(θ) = (cos θ, sin θ) and the source S is determined by
ρsheet, jsheet. The nonshielding term alone is sufficient for
some applications.

For the v-integration we use an adaptive Gauss-Kronrod
integrator. The θ-integration is done with the trapezoidal
rule. The domain of θ-integration is small for most v-
values, as shown in Fig. 2 of [1]a.

The evolution of the source is governed by the Vlasov
equation. We approximate this by a Monte Carlo particle
method in accelerator coordinates [1]. At time u we know
the particle phase space positions for 0 ≤ v ≤ u. F(R, u)
is then computed as an integral over history and used to
evolve the particles phase space positions to u + Δ, where
Δ is small enough so the fields are constant to good approx-
imation. The new source at u+Δ is then determined using
a density estimation procedure (e.g. kernel density estima-
tion with a product of Epanechnikov kernels [3]) and the
process is repeated.
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The self field computation in (2) is the most time con-
suming part because of the v-integral over the bunch his-
tory. The flop count per time step is O(NXNZNvNθ)
where NXNZ is the number of field grid points and NvNθ

is the number of integration grid points. The whole v-
integral over the history of the bunch must be done at
each time step since F(R;u) cannot be used to calculate
F(R;u + Δ) and thus Nv increases with time. Therefore
the process F(R;u) is not Markovian; the future depends
on the past not only through the present.

MODIFIED PARADIGM

The main goal of this paper is to propose a modification
of the current paradigm. This entails a method to calcu-
late F0(R;u) using its spatial Fourier transform F̃0(k;u)
which we hope will speed up the computation. It can be
shown that the spatial transforms S̃(k;u) and F̃0(k;u) of
S(R;u) and F0(R;u) are related by

F̃0(k;u) = −
1

2

∫ u

0

dvS̃(k; v)J0((u − v)|k|) , (3)

where J0 is the zeroth order Bessel function of first kind
and |k| is the Euclidean norm of k. Eq. (3) is still history
dependent, but this dependence now resides in J0 rather
than the source.

The key to our approach is the fact that, unlike J0, an
exponential kernel effectively removes the history depen-
dence. To illustrate, consider

F (u) =

∫ u

0

dvg(v) exp(β(u − v)) , (4)

for function g and complex constant β. Then for Δ > 0

F (u) = (5)

exp(βΔ)F (u − Δ) +

∫ u

u−Δ

dvg(v) exp(β(u − v)) .

Although the integral (4) remains history dependent, it
solves the initial value problem F ′ = βF + g(u) with
F (0) = 0, and thus is a Markov process.

The above suggests that the integral over the history of
the bunch can be essentially localized through an approxi-
mation of J0 by a sum of exponentials:

J0(v) ≈

NE∑
n=1

αn exp(βnv) . (6)

Combination of this approximation with Eq. (3) yields

F̃0(k;u) ≈

NE∑
n=1

αnF̃n(k;u) , where

F̃n(k;u) = −
1

2

∫ u

0

dvS̃(k; v) exp(βn(u − v)|k|) .

By analogy with (5) we obtain

F̃n(k;u) = exp(βnΔ|k|)F̃n(k;u − Δ)

−
1

2

∫ u

u−Δ

dvS̃(k; v) exp(βn(u − v)|k|) .
(7)

Formula (7) is the center piece of the modified paradigm,
and it effectively removes the v-integration over bunch his-
tory. At the point in the code where we compute F(R, u),
we know the particle phase space positions. In addition in
the modified paradigm we will also know the F̃n(k, u−Δ)

and S̃(k, u − Δ). We first compute S(R, u) from the par-
ticle positions, S̃(k, u) by FFT and then F̃n(k, u) from
(7). Since S̃(k, v) is slowly varying, the integral in (7)
can be done after a linear interpolation of S̃(k, v) us-
ing S̃(k, ·) at u − Δ and u. From the F̃n(k, u) we
find F(R, u) by an IFFT and then evolve the particles
to u + Δ. The FFT is key here, and a flop count per
time step gives O(NXNZNE log(NXNZ)) in contrast to
O(NXNZNvNθ). So NE log(NXNZ) replaces the typi-
cally larger NvNθ. In the case of a nonuniform grid an
NFFT will be used [4].

Let us briefly comment on the construction of the ap-
proximation (6). Due to the asymptotic behavior of J0, its
sum-of-exponentials approximation (6) must break down
for very late times. Therefore, we focus on finite-time ap-
proximation of J0, and its Laplace convolution

(J0 ∗ g)(u) =

∫ u

0

dvJ0(u − v)g(v). (8)

If A (here the exponential sum in (6)) approximates J0,
then we have the estimate [5]

‖A ∗ g − J0 ∗ g‖L2(0,T ) ≤

eηT sup
s∈η+iR

∣∣∣∣∣ Â(s) − Ĵ0(s)

Ĵ0(s)

∣∣∣∣∣ ‖J0 ∗ g‖L2(0,T ),
(9)

where [0, T ] is the approximation window in time. Since
the Laplace transform Ĵ0(s) = (s2 + 1)−1/2 of J0(v) is
singular for s = ±i, the shift η > 0 above must be in-
cluded. We have chosen η = 10−6, and then focused on
finding Â(s) =

∑NE

n=1 αn/(s − βn) to achieve

sups∈η+iR

∣∣∣∣∣ Â(s) − Ĵ0(s)

Ĵ0(s)

∣∣∣∣∣ < ε, (10)

where ε is a prescribed tolerance.
Our algorithm for constructing the desired rational ap-

proximation Â(s) to Ĵ0(s) is essentially Xu and Jiang’s
(XJ) [6] adaptive version of the Alpert, Greengard,
Hagstrom (AGH) compression algorithm [5] used in the
context of radiation boundary conditions. We further mod-
ify the XJ algorithm to incorporate the parity conditions
(see Fig. 2), obeyed by the real and imaginary parts of
Ĵ0(s) for s ∈ η + iR, and we have also used quadruple
precision arithmetic. Embedded within the XJ algorithm
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Figure 2: Profiles for (s2 +1)−1/2. The real and imaginary
profiles are shown along s = η + i(− 3

2 , 3
2 ). For the sake of

the figure, here η = 10−3 rather than η = 10−6.

is the AGH algorithm for solving the following nonlinear
least squares problem (here with h(s) = Ĵ0(s)):

minP,Q

∫ ξ2

ξ1

∣∣∣∣P (η + iξ)

Q(η + iξ)
− h(η + iξ)

∣∣∣∣
2

dξ , (11)

that is minimization of the integral over the space of poly-
nomials P (s) and Q(s) such that deg(Q) = deg(P ) + 1.
The XJ algorithm starts with an adaptive interval refine-
ment of the inversion contour η + iR, one based on the
smoothness of h(η + iξ). The AGH algorithm is then ap-
plied recursively from the finest to the coarsest levels, with
the goal of first isolating those pole locations βn (and their
corresponding strengths αn) which lie closest to the con-
tour (thereby somewhat allievating the ill-conditioning of
the problem). Once a sum-of-poles approximation has been
constructed via the XJ algorithm, we then verify (10). If it
is not achieved, then we increment NE and try again.

We studied the toy model

F (R;u) =

∫ u

0

dv

∫ π

−π

dθG(R + (u − v)e(θ); v) ,

where “the source” is given by

G(R;u) = exp

(
−ν|R − Rc(u)|2

)
,

Rc(u) = (a cos(ωu), b sin(ωu)) .

The source G is essentially a Gaussian moving on an el-
lipse. We take ν = 5, ω = 2π, a = 1.2, b = 0.8. In
the spirit of the current paradigm and its modification we
calculate F (R;nΔ) on a 2D grid with 64 · 48 grid points
in Z · X . Figure 3 displays the expected quadratic growth
in CPU time for the current paradigm where we use the
quad2D integrator from Matlab. In contrast, in the modified
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Figure 3: Comparison of CPU times between current
paradigm and its modification. The numbers 11 and 20 are
ratios of CPU times.

paradigm the CPU time grows linearly. Moreover the CPU
times are consistent with flop counts and function evalua-
tion counts. We used 64 · 48 grid points in kZ · kX with
maximal |k|-value around 26 so that the needed domain of
J0 is [0, 260]. We used NE = 56 where the relative error
(with respect to the envelope) of J0 on the interval [0, 106]
is ≤ 0.01. The relative error only blows up beyond the
interval [0, 107].

In summary we have found in the toy model that the CPU
time at large times u is considerably less for the modified
paradigm and this is consistent with a function evaluation
and flop count. For the bunch compressor problem there
appears to be a considerable decrease in flop count for the
modified paradigm, as discussed after (7). Thus the cpu
times and function evaluation counts in the toy model and
the flop counts in the current and modified paradigms for
the bunch compressor give us some optimism that we can
decrease the CPU time in our VM3@A code. Our next step
is to revise the toy model to make it more realistic. If this
looks good, we’ll test the idea in our VM3@A code.

FUTURE PARADIGM

In the approaches discussed above we have replaced the
VM system by an integro-differential system which in-
volves the integral over history but only requires the eval-
uation of fields in the bunch. We now turn our attention to
a direct time integration of the VM system of PDEs. This
eliminates the integral over history but requires the fields
outside the bunch. To deal with the latter we will consider
radiation boundary conditions, e.g. as developed in [5]. For
spatial discretization we will begin by investigating Dis-
continuous Galerkin methods [7] and their implementation
in the code HEDGE (Hybrid Easy Discontinuous Galerkin
Environment, see http://wiki.tiker.net/Hedge). This work
will be part of a Ph.D. dissertation project by one of us
(D.B.).
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