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Abstract 
In order to have a free electron laser (FEL) of high 

performance we need to design and optimize it taking into 
account the dynamics of electrons and their interactions 
with each other and with their surroundings. An accurate 
self-consistent simulation of collective effects in the 
charged beams remains a challenging problem for 
numerical analysis. In this paper we consider only the 
modeling of FEL process in an undulator section. We 
give a short overview of the numerical methods adopted 
in different FEL codes. Advantages and drawbacks of 
these methods will be discussed. Some approaches to 
improve the accuracy and efficiency of the codes will be 
presented and the remaining challenges in FEL modeling 
will be highlighted. 

INTRODUCTION 
An accurate self consistent simulation of collective 

effects in the charged beams remains a challenging 
problem for numerical analysis. During the last decades 
several numerical codes have been developed to model 
the non-linear process in a self-amplified spontaneous 
emission (SASE) free electron lasers (FEL). In this paper 
we review the mathematical FEL model used in these 
codes [1-4]. To illustrate the numerical methods we use 
those implemented in code ALICE [5].  

Modelling of the FEL is challenging due to different 
scales of the process [6]. The disparity of scales up to 12 
orders of magnitude imposes several limitations on the 
size of the systems that can be modelled on the basis of 
classical Maxwell-Vlasov set of equations. 

 In order to be able to study the FEL process two main 
approximations are used: wiggler-period averaging of the 
equations of motion and slowly-varying envelope 
approximation of the Maxwell equations. 

FEL MATHEMATICAL MODEL 
We consider the case of helical undulator with the 

magnetic field on the axis given by 
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Following the approach of [1] the equations of motion 
for helical undulator can be derived from Hamiltonian 
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In order to avoid the necessity to resolve the fast 
“slalom” motion we carry out wiggler-period averaging 
of the Hamiltonian. The scalar product disappears and we 
obtain the averaged Hamiltonian 
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The squared module of the transverse part of the vector 

potential /( )a eA mc


can be approximated as  
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Here ( )wk k z t     is a particle phase, K  is an 

undulator parameter, exp( )s sa i  is a normalized complex 

amplitude of the amplified wave 
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The canonical moments are defined by relations 
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The equations of motion derived from the averaged 
Hamiltonian read 
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where y xBg   describes the gradients of the focusing 

quadrupole lattice and we have used the following 
representations of the undulator parameter and the 
transverse EM field 
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We split the electromagnetic field in the transverse and 
the longitudinal components. The longitudinal 
electrostatic field comes from the bunching and can be 
suggested to be a nearly periodic one. Then the Fourier 
components of the longitudinal field can be found from 
the equation [1] 
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The transverse field is written in the complex form with 
amplitude ( , )E r t

  which fulfils the parabolic equation 

(paraxial or slowly-varying envelope approximation) 
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Along the trajectory 0 /t t z c   this equation can be 

rewritten in a simpler form 

2 (1)
0 0 02 , ,z

d z K z
ik E z t ikc v z t

dz c c
 


                  

 . 

If the Pierce parameter [7]  2 1
zc     is small and 

the transverse variation of the longitudinal field can be 
neglected than the following set of normalized and 
simplified equations can be considered 
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where 1
0x̂ xr  , 1

0ŷ yr  , ( 0 2 x yr   ) are transverse 

particle coordinates,   1
0 0

ˆ ( )        is an energy 

deviation, Ĉ  is a detuning  parameter, û  is the 

normalized (in complex notation) electric field and ˆ
zE  is 

the longitudinal electric field. The other parameters in Eq. 
(1) are defined as in [7, Chapter I]. 

NUMERICAL METHODS 
In last decades several FEL codes have been developed 

around the world. In our studies at DESY we use mainly 
three codes whose basic features are listed in Table 1. 

 

Table 1: Numerical Methods in Different Codes 

 FAST[2] Genesis 1.3[3] ALICE[5] 

Equations 
of motion 

Runge-Kutta Leap-frog 

EM field 
solver 

Integral 
representation 

Finite-
difference, 

ADI 

Finite-
difference, 
Neumann 

Boundary 
condition 

Free space Dirichlet Free space 
with PML 

 
These codes are based on the mathematical model 

described in the previous section. In the following we 
consider the numerical methods implemented in code 
ALICE [5]. In this code the equations of motion of the 
particles are integrated with symplectic “leap-frog” 
scheme. The parabolic field equation is resolved with 
implicit Neumann finite difference scheme based on 
azimuthal expansion. Additionally we have implemented 

the open boundary condition with the help of perfectly 
matched layer (PML) for parabolic equation. The last 
feature allows for a mesh only in the bunch vicinity. The 
implemented field solver is accurate and fast. The code is 
parallelized and allows to use one dimensional, 
rotationally symmetric or fully three dimensional models.  

Particle Distribution 
At the beginning we divide the bunch longitudinally in 

sN  slices (numerated from the tail) with the length equal 

to the radiation wavelength. The initial particle 
distribution in the slice is generated with the “quiet start” 
method [8]. For this purpose we use the Sobol sequences 
[9]. The uniform distribution is converted to the Gaussian 
one with the help of the inverse error function 

 12 erf (2 1)y x    . 

Figure 1 presents a comparison with the code Genesis 
1.3 [3]. We carry out a simulation with only one slice in 
amplifier model. The space of parameters corresponds to 
SASE2 undulator at wavelength of 0.1 nm as described in 
[10]. The left plot compares the radiation power at 
saturation. The first comparison was done in the January 
2008 [11] (version 1.0 of Genesis 1.3). The disagreement 
in the saturation power at the level of 20 % was obtained. 
After data analysis we have found that the used in 
Genesis 1.3  the “Box-Mueller” algorithm [9] (to convert 
the uniform distribution to Gaussian one) has spoiled the 
“quiet-start” property and the statistics of the particle 
distribution. The new version 2.0 of Genesis 1.3 released 
in April 2008 allows to use the inverse error function 
transformation (parameter inverfc=1). With this option 
results obtained by both codes converge together. 

 
Figure 1: Convergence of the different codes. 

 
 The noise statistics in the slice is imposed following 

Fawley [12].   The pn  macropartiucles in each beam slice 

are subdivided into an ensemble of  bn  beamlets, each 

composed of 2M  macroparticles ( M  is the order of the 
highest harmonic of interest).  The 2M  macroparticles  
in each beamlet k  are loaded uniformly 

0 ( 1)jk k Mj     , 1..2j M , 1.. bk n , 
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where 0k  is uniformly increased with index k  over the 

interval 0, M
   . To model the effects of shot noise a 

small random deviations, 

1

cos( ) sin( )
m M

jk mk jk mk jk
m

a m b m  



  , 

are  added to the macroparticle positions. Each coefficient 
,mk mka b  are independently picked from Gaussian 

distributions with rms width  
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Note that for m M  the rms width mk  is different 

from that given in [12].  Indeed, instead of Eq (5a) from 
[12] we obtain 
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For m M we have 
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And for m M the equation reads 
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The described “shot noise” algorithm is based on small 
variations in the longitudinal positions of the 
macroparticles. Alternatively a variation in the charge can 
be used as it is described in [13]. 

 

Integration of Equations of Motion 
The longitudinal equations are discretized with “leap-

frog” scheme 
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and for the transverse equations a matrix formalism of the 
linear beam optics is applied 
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.  

Solution of the Parabolic Field Equation  
The transverse mesh is constructed in polar coordinates 

with  rN  divisions along the radius and N  divisions 

along the angle. Each slice is tracked through the 
undulator with zN  periods. In the following we consider 

time-independent case and only later on we will discuss 
the general case. 

 

 
 

Figure 2: The transverse mesh with PML. 
 
To find the transverse field we use the Fourier 

transform in azimuthal coordinate.  For each azimuthal 
mode m  we have to solve the parabolic equation (in a 
simplified notation)  

2
( ) (1)( )

2

1 1
2

2
m mm d

r u a
iB r r r dzr

  
      

, (0, )r  , 

with the condition on the axis 

(0) (0) 0u
r





, ( ) (0) 0mu  , 0m  . 

In order to truncate the mesh at radius 0r  we use an 

absorbing layer called Perfectly Matched Layer (PML) 
[14], which possesses the desired property of generating 
very low numerical reflection. In order to construct a 
mathematical model of the PML we introduce the 
complex variable 

 
0

( )
ri

r r d
B

     , 0

0
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0,

r r
r
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. 

The change of the variable r  to r  (and the partial 
derivative / r   to / r  ) in the parabolic wave equation 
will give us the required equation. This change of variable 
does not alter the solution in the area of interest ( 0r r ), 

but it extends the solution by a fast exponentially 
decaying part in the absorbing layer 0 PMLr r r  . 

Let us introduce the radial mesh 

 1 0.5j j j

i
r r r

B
     ,  1: rj n , 0 /rn r r  , 
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0.5 ( 0.5)j rr j n r     ,  0PML PMLL r r  . 

The implicit Neumann numerical scheme reads 
 1 1 1

1 1
n n n n

q q q q q q qc u b u a u f  
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1 12 2 ( )n n n n

q q q q q q q ff c u b u a u z a q        . 

We supply this scheme with the discrete boundary 
condition at PMLr  

    0;
r PML r PML r PML

n
n n n n n na c f     1;

r PMLn nb     0m  , 

and a discrete boundary condition at 0r  . The last 
condition for the monopole mode reduces to 

 0 2

1z
c

iB r





, 0 0a  , 0 01b c  , 

   (1)
0 0 1 0 02 2 (0)n n nf c u b u za      ,       

and for higher order modes it reads 
 0 0 0 0;na c f    0 1;b   0m  . 

Figure 2 sketches the used transverse mesh. The black 
points present the location of sample points for the field. 

 

 
Figure 3: The radiation power with and without PML. 

 
In FEL simulations the Dirichlet boundary condition 

works satisfactory in the exponential growth regime 
(linear regime), but it could spoil the correct solution after 
the saturation (non-linear regime). Figure 3 shows a 3D 
simulation for a round beam with radius ˆ 1br  . It can be 

seen that for the Direchlet condition the mesh should be 
truncated very far from the beam (at 0̂ 10r  ). On the 

contrary, the quite thin perfectly matched layer (only 7 
mesh points) allows to truncate the mesh accurately 
already at radius 0̂ 2r  . 

Time-dependent Simulations 
Let us consider the time-dependent equation along the 
trajectory  0 /t t z c    

2

0 0, ,
2

d z z
E z t F z t

ik dz c c
             

    
 . 

We divide the bunch in sN  slices of the length s  and 

numerate them from the tail by index j . The slice with 

index j  cross 0z   at the moment of time 

 0j
j s

t
c


   

and it will reach the position z at the time 

 ( )j
z

j s z
t z

c v


   . 

 

 
 

Figure 4: Time-dependent case. 
 
The derivative in z  can be approximated as  
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Let us consider Figure 4 and derive the following 
relations 
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Hence we can write 
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1 1
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F z t z

ik z

 
 

 

  
    

   
, 

where  

 0.5, ( )j
n n j nE E z t z   

means the EM field of slice j  at position nz .  

 

 
 

Figure 5: Parallelization. 
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It follows from the last equation that the field of slice j  

at position nz can be found easily if we know the field of 

the previous slice 1j   at the previous position 1nz  . 

Hence the above described algorithm can be parallelized 
as sketched in Figure 5. We start from the last slice and 
track the particles of this slice through the whole 
undulator; the radiated EM field is saved. Then we track 
the next slice in the radiation field of the previous slice 
and so on. The three codes listed in Table 1 are 
parallelized and show the linear scaling of performance in 
proportion to the number of processes used.  

NUMERICAL EXAMPLE 

Expected Radiation in the FLASH with 
3rd Harmonic Module 

In order to linearize the energy chirp before the first 
bunch compressor the third harmonic module is installed 
in FLASH at the end of 2009.  

To find working points, to define the tolerances and to 
characterize the parameters of the bunch at the undulator 
entrance we have done series of “start-to-end” simulations 
for different bunch charges [15].  
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Figure 6: Radiation energy at FLASH. 

 
Figure 6 presents the evolution along the undulator of 

the radiation energy in SASE mode for different bunch 
charges. The full set of plots for different characteristics 
of the obtained radiation can be found in [16]. 

 

 
 

Figure 7: Radiation energy at the European XFEL. 
 
Figure 7 presents comparison of two codes for the set 

of parameters of the European XFEL [16] as well. 

OUTLOOK 
The approximations used in the described FEL model 

allow studying of many features of the physical processes 
in undulators. The existing FEL codes are benchmarked 
by comparison with experiments [17] and with analytical 
results [7]. However for certain problems such as space 
charge dominated beams, ultra short electron beam 
pulses, high diffraction cases the used approximations 
begin to fail and numerical solution of the original set of 
Maxwell-Vlasov set of equations is required. There are 
several codes [18, 19] where non-averaged equations of 
motion are used, but the field is found from the paraxial 
approximation in the same manner as described in this 
paper. Abandoning of the paraxial approximation (slowly-
varying envelope approximation) will result in necessity 
to use quite time consuming models as, for, example PIC 
model. A promising approach for the PIC simulations 
could be the approach based on Lorentz-boosted frame 
transformation [20, 21]. 
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