
A MASSIVELY PARALLEL GENERAL PURPOSE MULTI-OBJECTIVE
OPTIMIZATION FRAMEWORK, APPLIED TO BEAM DYNAMIC

STUDIES

Y. Ineichen, A. Adelmann∗, PSI, Villigen, Switzerland
C. Bekas, A. Curioni, IBM Research – Zurich, Switzerland

P. Arbenz, Department of Computer Science, ETH Zurich, Switzerland

Abstract
Particle accelerators are invaluable tools for research in

the basic and applied sciences, in fields such as materials

science, chemistry, the biosciences, particle physics, nu-

clear physics and medicine. The design, commissioning,

and operation of accelerator facilities is a non-trivial task,

due to the large number of control parameters and the com-

plex interplay of several conflicting design goals.

We propose to tackle this problem by means of multi-

objective optimization algorithms which also facilitate

massively parallel deployment. In order to compute solu-

tions in a meaningful time frame, that can even admit on-

line optimization, we require a fast and scalable software

framework.

In this paper, we present an implementation of such a

framework and report first results of multi-objective opti-

mization problems in the domain of beam dynamics.

INTRODUCTION
In contemporary scientific research, particle accelera-

tors play a significant role. Fields, such as material sci-

ence, chemistry, the biosciences, particle physics, nuclear

physics and medicine rely on reliable and effective parti-

cle accelerators as research tools. Achieving the required

performance is a complex and multifaceted problem in the

design, commissioning, and operation of accelerator facili-

ties. Today, tuning machine parameters, e.g., bunch charge,

emission time and various parameters of beamline ele-

ments, is most commonly done manually by running simu-

lation codes to scan the parameter space. This approach is

tedious, time consuming and can be error prone. In order

to be able to reliably identify optimal configurations of ac-

celerators we propose to solve large multi-objective design

optimization problems to automate the investigation for an

optimal set of tuning parameters. Observe that multiple

and conflicting optimality criteria call for a multi-objective

approach.

We developed a modular multi-objective software frame-

work (see Fig. 1) where the core functionality is decoupled

from the “forward solver” and optimizer (master/slave).

This allows to easily interchange optimizer algorithms, for-

ward solvers and optimization problems. A “pilot” coordi-

nates all efforts between the optimization algorithm and the

forward solver. This forms a robust and general framework

∗ andreas.adelmann@psi.ch

Optimizer

Pilot

-
-

input

-
-

obj

-
-

constr

-
-

sims

OPAL

Convex

Optimization

Algorithms

Heuristic

Algorithms

Figure 1: Multi-objective framework: the pilot (master)

solves the optimization problem specified in the input file

by coordinating optimizer algorithm and workers running

forward solves.

for massively parallel multi-objective optimization. Cur-

rently the framework offers one concrete optimization al-

gorithm, an evolutionary algorithm employing a NSGAII

selector [1]. Normally simulation based approaches are

plagued by the trade-of between level of detail and time to

solution. We address this problem by using forward solvers

with different time and detail complexity.

The first section covers a brief introduction to multi-

objective optimization theory and describes the available

optimizer. Next we discuss the implementation of the

framework and present a proof of concept application of

a beam dynamics problem.

MULTI-OBJECTIVE OPTIMIZATION
Optimization problems deal with finding one or more

feasible solutions corresponding to extreme values of ob-

jectives. If more than one objective is present in the opti-

mization problem we call this a multi-objective optimiza-

tion problems (MOOP). A MOOP is defined as

min fm(x), m = 1 . . .M (1)

s.t. gj(x) ≥ 0, j = 0 . . . J (2)

xL
i ≤ x = xi ≤ xU

i , i = 0 . . . n, (3)

where we denote f as the objectives (1), g the constraints

(2) and x the design variables (3).

TUAAI2 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

62C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

04 Optimization

f2

f1
price

p
er
fo
rm

a
n
ce

low

low

high

high

x∗
0

x∗
1

x∗
2

x∗
3

x4

Figure 2: Two competing objectives can not be optimal at

the same time. Red points represent Pareto optimal points,

while x4 is dominated (exhibits a worse price per perfor-

mance ratio than e.g. x∗
2) by all points on the blue curve

(Pareto front).

Often, we encounter conflicting objectives complicating

the concept of optimality. To illustrate this, let us consider

the problem of buying a car. Naturally, we want to get the

best performance for the lowest price. This can be formu-

lated as MOOP (4).

min price

max performance

s.t. . . .
(4)

Obviously it is not possible to get the maximal perfor-

mance for the lowest price and a trade-off decision between

performance and price has to be reached (see Figure 2).

Since not every choice is equally profitable for the buyer

(car x4 costs as much as x∗
2 but offers less performance),

we pick trade-offs (red points) that are essentially “equally

optimal” in both conflicting objectives, meaning we cannot

improve one point without hurting at least one other solu-

tion. This is known as the notion of Pareto optimality.The

set of Pareto optimal points (blue curve) form the Pareto

front or surface. All points on this surface are optimal.

Once the shape of the Pareto front has been determined

the buyer can specify preference, balancing which features

are more important. This is called a-posteriori preference

specification since we select a solution after all possible

trade-offs have been presented to us. The other alternative

is to specify preference a-priori, e.g., by weighting (speci-

fying preference before solving the problem) and combin-

ing all objectives into one and applying a single-objective

method to solve the problem (yielding only one solution).

In many situations preference is not known a-priori and

an a-posteriori preference specification helps conveying a

deeper understanding of the solution space. The Pareto

front can be explored and the impact of trade-off decision

become visible.

Sampling Pareto fronts is far from trivial. A number of

different approaches have been proposed, e.g. evolutionary

algorithms, sampling, simulated annealing, swarm meth-

Population

I1
Ik

I2I3
I4

Selector

1. I4, 2. Ik, 3. I2, 4. I3
5. I1, . . ., n. In

Variator

I4 · Ik:
=

Figure 3: Schematic view of interplay between selector and

variator.

ods and many more. The next section describes how evo-

lutionary algorithms (available in our framework) are used

to approximate the Pareto front of an multi-optimization

problem.

Evolutionary Algorithms
Evolutionary algorithms (EA) are loosely based on na-

ture’s evolutionary principles to guide individuals towards

an optimal solution (survival of the fittest). This “simu-

lated” evolutionary process preserves entropy/diversity by

using mutation and crossover to remix the fittest individu-

als in a population. Maintaining diversity in a population is

critical for the success of all evolutionary algorithms.

In general, any evolutionary algorithm consists of the

following components:

• Genes: properties/traits of an individual

• Fitness: a mapping from genes to fitness of individu-

als

• Selector: ordering relation to select k fittest individu-

als

• Variator: recombination (mutations and crossover)

schemes for offspring generation.

In the context of our framework, genes correspond to

specified design variables and individuals are ranked by

their objective values (fitness). Evolutionary algorithms

schematically work as depicted in Figure 3. Since there

already exist plenty of implementations of evolutionary al-

gorithms, we decided to incorporated the existing PISA li-

brary [1] into our framework. One of the advantages of

PISA is that it separates variator from selector, rendering

the library expendable and configurable. Implementing a

variator was enough to use PISA in our framework and re-

tain access to all available PISA selectors. As shown in

Figure 3, the selector is in charge of ordering a set of d-

dimensional vectors and selecting the k fittest individuals

currently in the population. The performance of a selector

depends on the number of objectives and the surface of the

search space. So far, we only used an NSGA-II selector [2]

exhibiting satisfactory convergence performance.

Proceedings of ICAP2012, Rostock-Warnemünde, Germany TUAAI2

04 Optimization

ISBN 978-3-95450-116-8

63 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Optimizers

O1

Oi

Pilot
job
queue

j2 j1j3 j4

r1

Workers

W1

Wj

Figure 4: Schematic view of messages passed within the

network. The cyan path describes a request sent from Oi to

the PILOT being handled by Wj . Subsequently the result is

returned to the requesting OPTIMIZER (Oi).

The task of the variator is to generate offspring and en-

sure diversity in the population. The variator can start gen-

erating offspring once the fitness of every individual of the

population has been evaluated. This explicit synchroniza-

tion point defines an obvious parallel bottleneck of evolu-

tionary algorithms. In the worst case one group of proces-

sors is taking a long time to compute the fitness of the last

individual in the population. During this time all other pro-

cessors are idle and wait for the result of this one individual

in order to continue to generate offspring. To counteract

this effect we call the selector already when 2 individuals

have finished evaluating their fitness, lifting the boundaries

between generations and evaluating the performance of in-

dividuals. New offspring will be generated and processors

can immediately go back to work on the next fitness evalu-

ation.

Our variator implementation uses the master/slave archi-

tecture, presented in the next section, to run as many func-

tion evaluations as possible in parallel. Additionally vari-

ous crossover and mutation policies are available for tuning

the algorithm to the optimization problem.

THE FRAMEWORK

The fact that multi-objective optimization problems are

omnipresent in research and industry calls for a general

purpose framework. The following requirements are nec-

essary to be able to apply the framework independently of

field and optimization problem:

• supporting any multi-objective optimization method,

• supporting any forward solver (simulation code or

measurements),

• general description/specification of objectives, con-

straints and design variables.

The reminder of this section discusses each requirement

and show how this is implemented in the OPT-PILOT frame-

work.

Every processor will take up one of three available roles

(see Figure 1): one core will act as PILOT, the remain-

ing cores are divided amongst WORKERS and OPTIMIZ-

ERS. As shown in Figure 4 the PILOT is used to coordi-

nate all “information requests” between OPTIMIZER and

WORKER. An information request job consists of a set

of design variables (e.g. the genes of an individual) and a

type of information it requests (e.g. function evaluation or

derivative). The PILOT keeps checking for idle WORKERS

and assigns jobs in the queue to any free WORKER groups.

Once the WORKER has computed and evaluated the request

it is routed back to the OPTIMIZER that originally requested

the information.

Using template parameters the composition of the opti-

mizer can be specified:

CODE LISTING 1: CALLING THE PILOT

typedef OpalInputFileParser Input_t;
typedef PisaVariator Opt_t;
typedef OpalSimulation Sim_t;
typedef Pilot < Input_t , Opt_t , Sim_t ,

/* ... */ > pilot_t;
scoped_ptr < pilot_t > pi(new pilot_t(args , comm));

After a processor gets appointed a role it starts a polling

loop asynchronously listening for incoming requests. To

that end a POLLER base class has been introduced. Classes

implementing the POLLER interface enter an infinite loop

and upon receiving MPI messages the appropriate handler

is called. A concrete implementation of the POLLER is al-

lowed to implement special methods acting as hooks in the

polling process, e.g. for actions that need to be taken after

a message has been handled. The core of the POLLER is

the onMessage() method. The method is called with the

MPI Status of the received message and a size t value

specifying different values depending on the value of the

MPI Tag. Every POLLER terminates the loop upon receiv-

ing a special MPI tag.

Implementing an Optimizer
All OPTIMIZER implementations have to respect the API

shown in Listing 2.

CODE LISTING 2: OPTIMIZER API

virtual void initialize () = 0;

// Poller hooks
virtual void setupPoll () = 0;
virtual void prePoll () = 0;
virtual void postPoll () = 0;
virtual void onStop () = 0;
virtual bool onMessage(MPI_Status status ,

size_t length) = 0;

The optimizer entry point corresponds to the

initialize() method. Since an optimizer derives

from the Poller interface, predefined hooks can be

used to influence the polling procedure. Using a special

“external” communicator group (passed to the OPTIMIZER

in the constructor) serves as interface to the PILOT to

queue job requests. Every set of optimizers working on

one optimization problem have their own “internal” MPI

TUAAI2 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

64C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

04 Optimization

communicator for handling the optimization part of the

framework.

Implementing a Forward Solver
Forward solvers can easily be added by implementing a

wrapper to run the simulation using a set of design vari-

ables. Listing 3 describes the API a forward solver has to

implement.

CODE LISTING 3: SIMULATION API

virtual void run() = 0;
virtual void collectResults () = 0;
virtual reqVarContainer_t getResults () = 0;

The run() method will be called by workers and should

execute the simulation in a blocking fashion. Subsequently,

the worker will call collectResults to parse data from

output files to the result data structures and ultimately use

getResults() to get the resulting objectives and pass the

data back to the optimizer. As before, every set of work-

ers handling the same problem has access to a shared MPI

communicator.

Optimization Problem Specification
Generally, any combination of simulation output vari-

ables (during any point of the simulation) can be used to

compute objectives, constraints or act as design variables.

Motivated by the principle of keeping meta-data (optimiza-

tion and simulation input data) together, we decided to em-

bed the optimization problem in the simulation input file

(e.g. using comments). In some cases it might not be

possible to annotate the simulation input file. By using

another input file parser the optimization problems from

stand-alone files.

Expression strings are parsed using Boost Spirit1. In

the process an annotated expression tree is constructed and

upon evaluation, all unknown variables are replaced with

values from simulation results. To improve the expres-

sive power of objectives and constraints we added a simple

mechanism to define and call custom functions in expres-

sions. This enables the user to define custom functions (e.g.

over data produced by a simulation or measurement files)

with ease using functors as shown in Listing 4.

CODE LISTING 4: SIMPLE AVERAGE FUNCTOR

struct avg {

double operator ()(
client :: function :: arguments_t args) const {

double limit = boost::get <double >(args [0]);
std:: string filename =

boost ::get <std::string >(args [1]);

double sum = 0.0;
for(int i = 0; i < limit; i++)

sum += getDataFromFile(filename , i);

return sum / limit;
}

};

1http://boost-spirit.com/

All custom functions have to be registered with the ex-

pression to ensure the expression knows how to resolve

function calls in its tree.

Parallelization
Parallelization is defined by a mapping of roles to avail-

able cores. Command-line options allow the user to steer

the number of processors used in worker and optimizer

groups. Here, we mainly use the command-line options

to steer the number of processors running a forward solver.

FORWARD SOLVER
The framework contains a wrapper implementing the

API mentioned in Listing 3 for OPAL [3]. OPAL pro-

vides different trackers for cyclotrons and linear acceler-

ators with satisfactory parallel performance [4]. Recently

we introduced a reduced envelope model [5] into OPAL

reducing time to solution by several orders of magnitude.

Access to the OPAL forward solver enables the opti-

mizer to solve a multitude of optimization problems arising

in the domain of particle accelerators.

EXPERIMENTS
Experiments were executed on the PSI FELSIM clus-

ter, running the framework using the components described

above. The FELSIM cluster consists of 8 dual quad-core In-

tel Xeon processors at 3.0 GHz and has 2 GB memory per

core with a total of 128 cores. The nodes are connected via

Infiniband network with a total bandwidth of 16 GB/s.

A first benchmark tries to reproduce the Ferrario match-

ing point [6] using the optimization problem given in equa-

tions (5) to (13).

min εx (5)

Δrmsx,peak (6)

Δεx,peak (7)

s.t. q = 200 [pC] (8)

VoltRF = 100 [MV/m] (9)

σL ≤ σx = σy ≤ σU (10)

KSL ≤ KSRF ≤ KSU (11)

LAGL ≤ LAGRF ≤ LAGU (12)

ΔzLKS ≤ ΔzKS ≤ ΔzUKS (13)

(14)

The first objective minimizes the emittance at the end of

the first traveling wave structure. The remaining two ob-

jectives minimize the distance from the position of the cur-

rent minimum peak to the expected peak location at 3.025
m for transverse bunch size (beam waist) and emittance.

Equations (8) and (9) define constraints for initial condi-

tions and design variables given in (10) to (13) correspond

to fieldstrength, and displacement of the solenoid.

Proceedings of ICAP2012, Rostock-Warnemünde, Germany TUAAI2

04 Optimization

ISBN 978-3-95450-116-8

65 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Visualization

For visualization purposes we implemented a simple

Pareto front explorer in Python. This simple tool provides

a simple mapping from solutions on the Pareto front to the

correct design variable values and helps investigate effects

of the trade-off decision on the design variables.

Figure 5: Approximation of Pareto front for the Ferrario

matching point optimization problem. Red circle marks se-

lected trade-off solution (38).

Δεx, peak [m]

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Δ
rm

s x
,
p
ea

k
[m

]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

The result of a 1000 generation run (taking approxi-

mately 20 minutes with 16 cores) for the Ferrario match-

ing problem mentioned above is show in Figure 5. For the

trade-off solution 38 we show the complete time evolution

of the slice beam in Figure 6. The minimum of beam waist

and emittance peak are coinciding and this point falls close

to the expected 3.025 m.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x r
m

s
(c

m
),

 ε
x

(m
m

-m
r)

s (m)

xrms
εx

Figure 6: Simulation results for individual 38 of Pareto

front shown in Figure 5.

CONCLUSIONS
We presented a framework to solve general multi-

objective optimization framework. Its modularity allows

to cover simulation-based optimization of a wide range of

problems.

A first study on a simple benchmark shows that the

framework is ready to tackle problems arising in the do-

main of beam dynamics. Even tough the stability analysis

of the presented results is still work in progress the results

are very convincing. With help of the master/slave paral-

lelization the framework and using only a small amount of

processors shows that a good approximation of the Pareto

front can be computed in a matter of minutes.

Improving parallel efficiency on massively parallel sys-

tems is currently work in progress.

ACKNOWLEDGMENT
The authors thank the SWISSFEL team for contributing

to the formulation of optimization problems.

REFERENCES
[1] PISA — a platform and programming language independent

interface for search algorithms. In Carlos M. Fonseca, Pe-

ter J. Fleming, Eckart Zitzler, Kalyanmoy Deb, and Lothar

Thiele, editors, Evolutionary Multi-Criterion Optimization
(EMO 2003), Lecture Notes in Computer Science, pages 494

– 508, Berlin, 2003. Springer.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast

and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation, 6(2):182–197,

April 2002.

[3] A. Adelmann, Ch. Kraus, Y. Ineichen, and J. J. Yang. The

OPAL (Object Oriented Parallel Accelerator Library) Frame-

work. Technical Report PSI-PR-08-02, Paul Scherrer Insti-

tut, 2008-2010. http://amas.web.psi.ch/docs/opal/

opal_user_guide.pdf.

[4] A. Adelmann, Ch. Kraus, Y. Ineichen, S. Russell, Y. Bi, and

J.J. Yang. The object oriented parallel accelerator library

(opal), design, implementation and application. In Proceed-
ings ICAP09, 2009.

[5] Yves Ineichen, Andreas Adelmann, Costas Bekas, Alessan-

dro Curioni, and Peter Arbenz. A fast and scalable low di-

mensional solver for charged particle dynamics in large par-

ticle accelerators. Computer Science - Research and Devel-
opment, pages 1–8, May 2012.

[6] M. Ferrario, J.E. Clendenin, D.T. Palmer, J.B. Rosenzweig,

and L. Serafini. HOMDYN study for the LCLS RF photoin-

jector. pages 534–563, 2000.

TUAAI2 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

66C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

04 Optimization

