
AN OpenMP PARALLELIZATION OF REAL-TIME PROCESSING OF 
CERN LHC BEAM POSITION MONITOR DATA 

H.Renshall, L.Deniau, CERN, Geneva, Switzerland 

 
Abstract 

SUSSIX is a FORTRAN program for the post 
processing of turn-by-turn Beam Position Monitor (BPM) 
data, which computes the frequency, amplitude, and 
phase of tunes and resonant lines to a high degree of 
precision. For analysis of LHC BPM data a specific 
version run through a C steering code has been 
implemented in the CERN Control Centre to run on a 
server under the Linux operating system but became a 
real time computational bottleneck preventing truly on-
line study of the BPM data. Timing studies showed that 
the independent processing of each BPMs data was a 
candidate for parallelization and the Open 
Multiprocessing (OpenMP) package with its simple 
insertion of compiler directives was tried. It proved to be 
easy to learn and use, problem free and efficient in this 
case reaching a factor of ten reductions in real-time over 
twelve cores on a dedicated server. This paper reviews the 
problem, shows the critical code fragments with their 
OpenMP directives and the results obtained. 

THE PROBLEM 
 
SUSSIX is a FORTRAN program for the post 

processing of turn-by-turn Beam Position Monitor (BPM) 
data, which computes the frequency, amplitude, and phase 
of tunes and resonant lines to a high degree of precision 
through the use of an interpolated Fast Fourier Transform 
(FFT). Analysis of such data represents a vital component 
of many linear and non-linear dynamics measurements. 

For analysis of LHC BPM data a specific version 
sussix4drive, run through the C steering code Drive God 
Lin, has been implemented in the CERN Control Centre 
(CCC) by the beta-beating team. Analysis of all LHC 
BPMs, however, represents a major real time 
computational bottleneck in the control room, which has 
prevented truly on-line study of the BPM data. In 
response to this limitation an effort has been underway to 
decrease the real computational time, with a factor of 10 
as the target, of the C and FORTRAN codes by 
parallelising them. 

 

SOLUTIONS CONSIDERED 
 

Since the application is run on dedicated servers in the 
CCC the obvious technique is to profit from the current 
multi-core hardware: 24 cores are now typical. The initial 
thinking was to parallelise the FFT code. 

The first attempts were to try a parallelised FFT from 
the Numerical Algorithms Group (NAG) fsl6i2dcl 

library for SMP and multicore processors together with 
the Intel 64-bit FORTRAN compiler and the Intel maths 
kernel library recommended by NAG. This library uses 
the OpenMP technology. 

Various NAG examples of enhanced routines were run 
(but not the multi-dimensional FFTs) and all slowed down 
in real time using more cores. This was not surprising 
since the examples only take milliseconds, comparable to 
the overhead to launch a new thread. Also it was found 
that the SUSSIX application calls cfft (D704 in the 
CERN program library), which maps onto NAG c06ecf, 
which had not yet been enhanced. This led to making a 
detailed central processing unit (CPU) profiling of the 
application. 

Profiling the application (with gprof) showed that in 
fact only 7.5% of the CPU time was spent in cfft while 
70% was spent in a function zfunr searching for the 
maximum of the Fourier spectra with large numbers of 
executions of an efficient inner loop of BPM data over 
many turns. This loop could not be improved (maxd turns 
of a BPM data is typically 1000): 

 
double complex zp,zpp,zv 
zpp=zp(maxd)            
do np=maxd-1,1, -1 
  zpp=zpp*zv+zp(np) 
enddo 
 
It was decided to try and parallelise SUSSIX directly 

using the OpenMP implementation supported by the Intel 
and GCC compilers. The home web site is 
www.openmp.org and an excellent tutorial at 
computing.llnl.gov/tutorials/openMP was the main 
reference. Examination of the code granularity revealed 
that the highest level of independent code execution was 
over the processing of individual BPM data. 

The pure FORTRAN offline version was parallelised 
first by adding OpenMP parallelisation directives around 
the main BPM loop. In this version each BPMs data is in 
a separate physical file hence they could be opened and 
read in parallel: 
 
!$OMP PARALLEL DO PRIVATE(n,iunit, 
                          filename,nturn) 
!$OMP& SHARED (isix,ntot,narm,iana,…, 
               iicf) 
do n=1,ntot ! Parallel loop over BPM 
  call datspe(iunit,idam,ir,nt1,nt2, 
              nturn,…,iana) 
  call ordres(eps,narm,nrc,idam,n,nturn) 
enddo 
!$OMP END PARALLEL DO 
 

THP06 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

230C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

04 Optimization



In addition, !$OMP THREADPRIVATE directives were 
added for all non-shareable variables in the called 
subroutine trees of datspe and ordres. 

This gave good scaling up to 10 cores on a public 
shared 16-core CERN computer centre  lxplus machine  
so was worth extending to the target mixed C and 
FORTRAN version to be run in the control room.  In this 
version the BPM data are all read into memory from a 
single file before being passed sequentially into the 
processing loop. The FORTRAN BPM processing loop is 
called from C and was parallelised with the similar 
OpenMP C-code syntax and gave the same scaling result: 

 
#pragma omp parallel private(i,ii,ij,kk) 
#pragma omp for 
for (i=pickstart; i<=maxcounthv; i++) { 
  sussix4drivenoise_(&doubleToSend[0], 
                  &tune[0],&amplitude[0]) 
#pragma omp critical 
// … I/O loop with sequential execution  
} 
 

The FORTRAN datspe and ordres call trees were 
unchanged. 

The OpenMP directives multi-thread the code and the 
threads then map onto physical cores in a multi-core 
machine. The run-time environment variable 
OMP_NUM_THREADS instructs OpenMP how many 
threads, hence cores, it can use for an execution and 
enables easy measurement of the scaling. 

Since the order of processing of individual BPMs is 
arbitrary the results file is post-processed by the Unix sort 
called as part of the application to give the same results 
output as a non-parallel execution.  

A test case of real 1000 turns LHC BPM data, analyzed 
to find 160 lines, was run on a reserved 24 cores machine 
cs-ccr-spareb7 in the LHC CCC.  

A normal run of this test case takes about 50 seconds on 
this machine. The observed wall-time speedup of C-
FORTRAN SUSSIX as a function of the number of cores 
(from E. Maclean,CERN,BE) is shown below in figure 1.  

 

Figure 1: Real time in seconds to solution with increasing number of cores. 

 

CONCLUSIONS 
About a factor of 10 improvement in the real 

computation time has been realized for this test case 
saturating at 12 cores, probably due to memory bandwidth 

limits (other possible causes were investigated). For the 
study of amplitude detuning reported in CERN-ATS-
Note-2011-052 MD [1] the parallelised C-FORTRAN 
SUSSIX was utilized within the LHC beta-beat graphical 

Proceedings of ICAP2012, Rostock-Warnemünde, Germany THP06

04 Optimization

ISBN 978-3-95450-116-8

231 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



user interface [2] and the target tenfold real-time 
reduction was verified in practice. 

There was a modest learning curve for OpenMP but the 
Lawrence Livermore National Laboratory tutorial was 
easy to read and understand with its simple FORTRAN 
and C code fragment examples. Most of the code changes 
were insertion of OpenMP directives and these were 
correctly implemented by the Intel FORTRAN and GCC 
compilers.  

This simple robust technique could be of interest to 
other real-time applications where a significant fraction of 
the CPU time is spent in independent calculations which 
have been implicitly serialized by being written in 
standard FORTRAN or C. 

 

REFERENCES 
[1] M. Albert et al., “Non-linear beam dynamics tests in the 

LHC” CERN-ATS-Note-2011-052 MD, July 2011.  
[2] M. Aiba et al., “Software package for optics measurement 

and correction in the LHC”, CERN-ATS-2010-092. 

THP06 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

232C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

04 Optimization


