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Abstract

For acceleration of charged particles at the heavy-ion

synchrotron at the GSI Helmholtzzentrum für Schwer-

ionenforschung in Darmstadt two ferrite-loaded cavity res-

onators are installed within the ring. Their eigenfrequency

can be tuned by a properly chosen bias current and thereby

modifying the differential permeability of the ferrite ma-

terial. The goal of the presented work is to numerically

determine the lowest eigensolutions of accelerating ferrite-

loaded cavities based on the finite integration technique

(FIT). The newly developed solver includes two subcom-

ponents: Firstly, a magnetostatic solver supporting non-

linear material for the computation of the magnetic field

which is excited by the specified bias current. This enables

to linearize the constitutive equation for the ferrite material

at the current working point, at which the differential per-

meability tensor is evaluated. Secondly, a Jacobi-Davidson

type eigensolver for the subsequent solution of the nonlin-

ear eigenvalue problem. Particular emphasis is put on the

implementation to enable efficient distributed parallel com-

puting. First numerical results for biased ferrite-filled cav-

ity resonators are presented.

INTRODUCTION

Within the heavy-ion synchrotron at GSI two ferrite-

loaded cavity resonators are operated to continuously ac-

celerate the injected charged particles. Inside the cavity

housing ferrite ring cores are installed around the beam

pipe. A magnetic field is established in these rings by

means of two different current windings: Firstly, a field

constant in time due to the bias current, and, secondly, an

additional time-harmonic component induced via radio fre-

quency coupling. During the acceleration phase the reso-

nance frequency has to be adjusted to reflect the increasing

speed of the heavy ions. This can be achieved by properly

choosing a bias current and thereby modifying the differen-

tial permeability of the ferrite material. For the SIS 18 fer-

rite cavity, biasing enables to alter the resonance frequency

in a range from about 0.6MHz to 5.0MHz. A detailed de-

scription of the SIS 18 ferrite cavity can be found in [1].

In this paper, the main aspects of the applied numerical

approach are briefly summarized followed by helpful re-

marks on efficient parallel computing. After that, the func-

tionality of the solver is demonstrated based on two differ-

ent simple examples.
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COMPUTATIONAL APPROACH

The relevant fundamental relations used for the calcu-

lation of eigenmodes of biased ferrite-loaded cavity res-

onators as well as the applied approach for the numerical

computation were already discussed in [2]. Hence, here the

most important aspects are picked up and summarized.

The dependence of the eigenmodes on the differential

permeability leads to several consequences: The static

magnetic field generated by the bias current has to be

calculated beforehand by means of a nonlinear magneto-

static solver. The constitutive equation is then linearized

at the specified working point. Moreover, the frequency

dependence of the permeability tensor results in a non-

linear eigenvalue problem. A dedicated solver for parallel

computing has been developed to meet the tight require-

ments. Presently, only Hermitian eigenvalue problems are

supported. Consequently, the current version of the solver

is applicable for loss-less materials as well as models dis-

cretized on equidistant grids.

PARALLEL COMPUTING

The realization of the solver should allow an efficient

computation on distributed memory machines. To this end,

it aims at a high computation to communication ratio as

well as a good load balancing. Regarding the first aspect,

the degrees of freedom (DOFs) of the FIT are arranged

such that all matrices have only few non-zero components

in their far off-diagonal regions. This directly leads to

reduced communication between the individual processes

and thus to a better parallel efficiency. For illustration,

the effect of the re-ordering is shown with the structure

of the system matrix of the eigenvalue problem on the left

of Fig. 1. Having in mind that the number of computa-

tions one processing unit has to perform is approximately

proportional to the number of non-zeros of the system ma-

trix which are owned by this process, it can also be seen

from this figure that the load balancing is rather poor. The

reason for this is that many variables are included that in

fact are zero in the FIT because they are allocated on ele-

ments outside the computation domain (including perfect

electric conductor cells) or due to boundary conditions.

Consequently, in the current implementation all the pseudo

DOFs are completely removed beforehand and therefore

very good load balancing is obtained.

The reduction of the system size automatically results in

further benefits, not only for parallel computing. In fact,

the beneficial impact on the memory allocation at the time
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re-arrangement

of DOFs

remove

pseudo DOFs

Figure 1: Structure of the system matrix of the eigen-

value problem for arrangement of the DOFs in standard

FIT (left), after re-arrangement (middle) and additional re-

moval of pseudo DOFs (right). Non-zero matrix elements

are shown in red. The thin horizontal lines indicate how

the data is partitioned on the different processes (four in

this this example).

the preconditioner is constructed is even more crucial as

the preconditioner is computed for the system matrix which

is shifted by a scaled unit matrix. Since it is not possible

to explicitly preallocate memory for vanishing diagonal el-

ements when using PETSc- (Portable, Extensible Toolkit

for Scientific Computation [3]) routines for sparse matrix-

matrix multiplication, the consequence is that additional

memory has to be allocated multiple times, which is an ex-

pensive operation. The complete removal of these elements

is one way to solve this issue.

NUMERICAL EXAMPLES

Numerical results for two examples, both biased cavity

resonators, are presented. Whereas the first one aims at the

verification of the nonlinear eigensolver, the second one is

a simple model of a cavity filled with ferrite ring cores.

Biased Cylinder Resonator

In the following, a lossless, ferrite-filled cylindrical cav-

ity resonator longitudinally biased by a homogeneous static

magnetic field is considered. Assuming that its magnetic

properties can be described by the Polder tensor [4], a char-

acteristic equation determining the resonance frequencies

can be formulated analytically [5, 6]. The parameters of

the test model are the same as for the one described in [2].

Yet, here the numerical computation is carried out for dif-

ferent orientations of the cylinder axis to the coordinate

axes keeping the external magnetic field aligned with the

cylinder axis. This way the construction of the permeabil-

ity tensor for an arbitrarily oriented magnetic field is tested

additionally. The eigenmodes for the lowest eigenfrequen-

cies are compared with the ones obtained numerically with

the implementation of the nonlinear eigensolver. Note that

for a reliable verification it is crucial to assign the modes

correctly. If one sorts the eigenmodes simply in ascend-

ing order with respect to the eigenvalues, by comparing the

field solutions it shows that the order of the modes is dif-

ferent compared to the semi-analytical calculation. This

is, however, only the case for discretizations on a rather

coarse mesh. By a proper refinement of the grid, the ex-

pected order is retained. Taking this into account, good

accordance of the numerical values with the analytical re-
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Figure 2: Relative deviation of the numerically obtained

value ω to the analytical result ω0 as a function of the DOFs

for the five lowest eigenfrequencies for a lossless, longi-

tudinally biased, ferrite-filled cylindrical cavity resonator.

The cylinder is oriented as shown in Fig. 3.
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Figure 3: Orientation of the cylinder in the coordinate sys-

tem. For the convergence study shown in Fig. 2, the cosine

of β, i.e. the angle between the cylinder axis and the x-z-

plane, is
√

2/3; the angle α between the projection of the

cylinder axis onto this plane and the z-axis is 45◦.

sults is observed for all tested orientations, which is shown

as an example in Fig. 2 for the orientation as depicted in

Fig. 3. Moreover, both the accuracy at a given number of

DOFs and the convergence order coincide with the results

obtained for the cylinder axis aligned with the z-axis (cf.

[2]).

For the model of the rotated cylinder the usage of the re-

duced system matrix as explained in the previous section

is of particular importance. Since for the discretization of

the model the cylinder is embedded in a larger box with the

remaining space filled up with perfect electric conductor

cells, the total number of mesh cells is much larger than the

actual cells of the cylinder. For instance, for the orientation

shown in Fig. 3 the used mesh for the finest discretization

consists of approximately 22 · 106 cells whereas the DOFs,

which are truly non-zero, amount to about only 6.2 · 106.

Yet, thanks to the reduction of the system size not the to-

tal number of mesh cells but only the number of non-zero

DOFs matters.
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Figure 4: CAD model of a simple biased cavity with ferrite

ring cores modelled with CST STUDIO SUITE R© [7]. The

current winding is indicated by the solid red lines.

Biased Cavity With Ferrite Ring Cores

The second example may be regarded as a simplified

model of the GSI SIS 18 ferrite cavity. Inside the cav-

ity housing ferrite ring cores are installed around the beam

pipe, one of them on each side of the centric gap (cf. Fig.

4). The bias magnetic field is excited by a current wind-

ing around these rings. For simplicity, the two parts of

the beam pipe are modelled as cylinders filled with per-

fect electric conducting material. The parameters of the

model are as follows: The total length of the structure is

140 cm, its radius 50 cm; the radius of the beam pipe is

10 cm, the inner and outer radius of the ring cores are 20 cm

and 40 cm, respectively; the length of each ring is 40 cm;

the length of the gap is 20 cm; finally, the bias current is

2 kA. The ferrite material is characterized by the constitu-

tive relation

B(H) = µ0 2.5 · 10
4 tanh

(

H · 10−2
m

A

) A

m
+ µ0H (1)

and a relative permittivity of ǫr = 1. The accuracy of

the magnetostatic solver is chosen such that the maximum

change of the relative permeability between subsequent

nonlinear iterations in any of the mesh cells does not ex-

ceed 10−4 in the final iteration, which corresponds to a rel-

ative change of the norm of the magnetic field in the or-

der of 10−6. Moreover, for the nonlinear eigenvalue solver

the accuracy is set as in the previous example. With these

settings the fully nonlinear computation of the nine low-

est eigenmodes, which are in the range from approximately

87 MHz to 300 MHz and all below magnetic resonance, is

performed. The lowest mode is found to be suitable for ac-

celeration. In order to test the reliability of the solver, the

whole computation is repeated multiple times with a more

and more refined mesh. For illustration the results for the

first two eigenmodes are shown in Fig. 5.

Additionally, the effect of the nonlinearity is estimated

by comparing the results with those of a linear calcula-

tion. In order to obtain reasonable results for the linear ap-

proach, the value of the relative permeability of the ferrite
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Figure 5: Eigenvalues as a function of the DOFs for the

two lowest eigenmodes computed using the fully nonlinear

approach for the simple cavity model.

material is set homogeneously such that the lowest eigen-

frequency of the linear and the nonlinear computation is ap-

proximately identical. Despite the fact that the linear solver

is a priori provided with this accurate data, the relative de-

viation of the obtained eigenvalues of both approaches is

still up to about 5% for the first nine eigenmodes.

SUMMARY AND OUTLOOK

The computation of eigenmodes of biased ferrite-

cavities based on the FIT has been demonstrated. For this

purpose, a new solver is developed for the evaluation of the

permeability tensor at the working point defined by the bias

magnetic field and the solution of the subsequent nonlinear

eigenvalue problem. Particular emphasis is put on efficient

computing on distributed memory machines. Whereas first

numerical results for lossless biased cavity resonators have

been presented, the support of lossy materials is planned in

future implementations.
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